
NASA/CR-1999-208992

Formal Verification of

Microcode

the AAMP-FV

Steven P. Miller, David A. Greve, Matthew M. Wilding

Rockwell Collins, Cedar Rapids, IA

Mandayam Srivas

SRI International, Menlo Park, CA

February 1999

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA's institutional
mechanism for disseminating the results of its
research and development activities. These
results are published by NASA in the NASA STI
Report Series, which includes the following
report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to

be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary
or of specialized interest, e.g., quick release
reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive

analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by
NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from

NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA's
mission.

Specialized services that complement the STI
Program Office's diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results ... even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page
at http'//www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at (301) 621-0134

• Phone the NASA STI Help Desk at
(301) 621-0390

Write to:

NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/CR-1999-208992

Formal Verification of

Microcode

the AAMP-FV

Steven P. Miller, David A. Greve, Matthew M. Wilding

Rockwell Collins, Cedar Rapids, IA

Mandayam Srivas

SRI International, Menlo Park, CA

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contracts NAS1-19704 and NAS1-20334

February 1999

Available from:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road

Springfield, VA 22161-2171
(703) 605-6000

Contents

1

2

3

4

5

Introduction 1

Background 3

2.1 NASA Langley, SRI International, and Collins 3

2.2 The AAMP Family of Microprocessors 3
2.3 PVS ... 4

2.4 Related Work .. 5

2.5 Formal Verification of the AAMP5 5

2.6 Overview of Processor Correctness 6

Project Goals and History 8

3.1 Project Goals .. 8

3.2 Project History 9

The

4.1

4.2

Macroarchitecture: The Programmeffs View of the AAMP-FV 13
Overview of the AAMP-FV Macroarchitecture 13

4.1.1 Organization of Memory 13
4.1.2 Process Stack 13

4.1.3 Stack Cache 15

4.1.4 Internal Registers 15

4.1.5 Instruction Set and Data Types 16

4.1.6 Multi-Tasking and Error Handling 16

Formal Specification of the Macroarchitecture 18
4.2.1 Bit Vectors 19

4.2.2 Memory 20
4.2.3 Macroarchitecture State 20

4.2.4 Next Macro State Function 22

The

5.1

5.2

5.3

Microarchitecture: The Register Transfer View of the AAMP-FV 25
Overview of the AAMP-FV Microarchitecture 25

5.1.1 The Data Path 25

5.1.2 The Microcontroller 27

5.1.3 The Bus Interface Unit 28

Formal Specification of the Microarchitecture 28

Formal Specification of the Microcode 31

111

6

7

Formal Verification of the AAMP-FV

6.1

33

Overview .. 33

6.1.1 Commutativity Theorems 33

6.1.2 Visibility Theorems 34
6.1.3 Invariant Theorems 34

6.2 The Micro Correctness Proofs 34

6.2.1 Standard AAMP-FV Instructions 35

6.2.1.1 The Micro Correctness Theory 35
6.2.1.2 The Micro Correctness Proofs 38

6.2.1.3 Proofs of Visibility Properties 39

6.2.1.4 Proofs of Invariant Properties 39

6.2.2 The Compl(x AAMP-FV Instru(tions 39
6.2.2.1 The CALL Instruction 40

6.3 Proof of the Stack Adjustment Logic 43
6.4 The Macro Lift Proofs 43

6.4.1 The Abstraction Function 43

6.4.2 The Macro Correctness Statement 43

6.4.3 The Macro Lift Proofs 45

Lessons Learned

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

47

Technology Transfer 47

Development of Domain Specific Libraries 48
Proof Rol:ustness 49

Exploiting Modularity 50

Suppcrt for Produ(t Families 51

Importance of the User Interface 52
What Needs to be Proven? 53

Suppcrt for Team Efforts 54
Use cf Human Resources 55

8 Conclusions and Future Directions 57

iv

List of Figures

2.1 Pictoral Representation of Microcode Correctness 6

4.1 The Process Stack 14

4.2 Macroarchitecture Specification Hierarchy 18

4.3 PVS Specification of AAMP-FV Bit Vectors 19

4.4 PVS Specification of AAMP-FV Memory 21

4.5 PVS Specification of AAMP-FV Macroarchitecture State 22

4.6 PVS Specification of REFA instruction 23

5.1 The AAMP-FV Microarchitecture 26

5.2 PVS Specification of CONNECT 30

5.3 PVS Specification of the Next PC Register 30

5.4 PVS Specification of the REFA Microcode 32

6.1 Overview of the Correctness Proof 33

6.2 CALL Proof Structure 41

6.3 Step Function .. 42
6.4 Abstraction Function 44

6.5 PVS Correctness Statement for the REFA Instruction 45

List of Tables

2.1 Applications of the CAPS/AAMP Family 4

3.1 Level of Effort .. 10

3.2 Proofs Completed 11

vi

Chapter 1

Introduction

Software and digital hardware are increasingly being used in safety-critical systems such as air-

craft, nuclear power plants, weapon systems, and medical instrumentation. Several authors have

demonstrated the infeasibility of showing that such systems meet ultra-high reliability requirements

through testing alone [8, 26]. Formal specification combined with mechanical proofs of correctness

are a promising approach for achieving the extremely high levels of assurance required of safety-

critical systems, but there have been few examples of the use of such approaches in industry.

Previous papers have described the formal verification of the microcode in a Rockwell propri-

etary microprocessor, the AAMP5 [27, 37, 35, 38, 36]. Sponsored by the Assessment Technology

Branch of NASA Langley and Collins Commercial Avionics, a division of Rockwell International,

this project was conducted by Collins and SRI's Computer Science Laboratory. The project con-

sisted of specifying in the PVS language developed by SRI [28, 29] a portion of a Rockwell pro-

prietary microprocessor, the AAMP5, at both the instruction set and register-transfer levels and

using the PVS theorem prover to show the microcode correctly implements the specified behavior

for a representative subset of instructions.

The central result of the AAMP5 project was to demonstrate that formal verification of the

microcode for a large, pipelined microprocessor was technically feasible. Over half the AAMP5

instruction set was formally specified at the macroarchitecture level, and all of the microarchitecture

needed for formal verification of the microcode was specified. The microcode for eleven instructions,

representative of several instruction classes, was proven correct in the absence of interrupts. Another

key result was the discovery of both actual and seeded errors.

However, the AAMP5 project was very much an exploratory project, and the cost to verify

each instruction was quite high. While it was clear that costs could be reduced significantly on the

next project, there was no way to accurately estimate how large this savings would be. Thus the

AAMP5 project left unanswered the question of whether formal verification of microcode could be

performed in a cost effective manner. To address this question, NASA, SRI, and Collins decided to

repeat the experiment with a new processor, the AAMP-FV, to see if the expertise gained during

the AAMP5 project could be used to bring the cost of down to an acceptable level.

Rather than choose a microprocessor currently under development, as was done with the

AAMP5, the decision was made to apply formal verification to a processor specifically designed

for use in ultra-critical applications. The AAMP-FV is a paper and pencil design of a processor

specifically designed for use in applications such as autoland or fly-by-wire. As a result, it is simpler

than other members of the AAMP family, though it is by no means a toy. Like all members of the

AAMP family, it is a stack-basedmachinedesignedfor usewith block-structured,high-levellan-
guagessuchasAda in real-timeembeddedapplications,andprovideshardwaresupportfor many
featuresnormallyprovidedby the compilerandthe run-timeenvironment.

Thekeyresultof theAAMP-FV projectis to confirmthat theexpertisegainedon theAAMP5
projectcanbeexploitedto reducethecostofformalverificationdramatically.Of the 80AAMP-FV
instructions,54wereprovencorrect. More importantly,the costof their verificationdroppedby
almostanorderof magnitudefromthat observedontheAAMP5project. In manyways,verification
ofthese54instructionstypifiedatrueengineeringprocess,usingwellunderstoodmethodsto achieve
clearlydefinedgoalsin the expectedamountof time.

However,this wasnot the casefor the entire project. As morecomplexinstructionswere
attempted,prooftechniquesfirst developedontheAAMP5projectbrokedownandnewapproaches
hadto bedevised.Thisphaseprogressedmoreasanexploratoryproject,with asteeplearningcurve
andunexpecteddelays.Whilefewerinstructionswereverifiedduringthis phase,severalimportant
newtechniquesweredeveloped.Oneof the maincontributionsof the AAMP-FV projectwasthe
developmentof methodsto handleinstructionswith complexmicrocode.

Organization of the Report
This report is organized as follows. Chapter 2 provides general background, describing the

participants in the project, the history of the AAMP family of microprocessors, the PVS speci-

fication language, and a brief survey of related work. Chapter 3 discusses the goals and history

of the project. Chapter 4 describes the AAMP-FV instruction set (macro) architecture and its

specification in PVS. Chapter 5 provides a similar discussion of the AAMP-FV register transfer

(micro) architecture. Chapter 6 describes the formal verification effort. Chapter 7 discusses lessons

learned on both the AAMP5 and AAMP-FV projects, and chapter 8 summarizes our conclusions

and suggestions for future work.

Chapter 2

Background

The following sections discuss the AAMP family of microprocessors, the PVS verification system,

related work, and provide a brief overview of the technical approach.

2.1 NASA Langley, SRI International, and Collins

NASA Langley's research program in formal methods [9] was established to bring formal methods

technology to a sufficiently mature level for use by the United States aerospace industry. Besides

the inhouse development of a formally verified reliable computing platform RCP [14], NASA has

sponsored a variety of demonstration projects to apply formal methods to critical subsystems of

real aerospace computer systems.

The Computer Science Laboratory of SRI International has been involved in the development

and application of formal methods for more than twenty years. The formal verification systems

EHDM and PVS were both developed at SRI. Both EHDM and PVS have been used to perform

several verifications of significant difficulty, most notably in the field of fault-tolerant architectures

and hardware designs. Recently, SRI has been actively involved in investigating ways to transfer

formal verification technology to industry.

Collins Avionics & Communications is a division of Rockwell International and one of the largest

suppliers of communications and avionics systems for commercial transport and general aviation

aircraft. Collins' interest in formal methods dates from 1991 when it participated in the MCC

Formal Methods Transition Study [17]. As a result of this study, Collins initiated several small

pilot projects to explore the use of formal methods, including formal verification of the AAMP5

[27, 37, 35, 38, 36].

2.2 The AAMP Family of Microprocessors

The Advanced Architecture Microprocessor (AAMP) is a Rockwell proprietary family of micropro-

cessors based on the Collins Adaptive Processing System (CAPS) originally developed in 1972 [3].

The AAMP architecture is specifically designed for use with block-structured, high-level languages

such as Ada in real-time embedded applications. It is based on a stack architecture and provides

hardware support for many features normally provided by the compiler and run-time environment,

such as procedure state saving, parameter passage, return linkage, and reentrancy. The AAMP

alsosimplifiesreal-timeexecutivedesignby implementingin hardwaresuchfunctionsasinterrupt
handling,task statesaving,and contextswitching.Useof internal registersholdingthe top few
elementsof the stackprovidesthe AAMP family with performancethat rivals or exceedsthat of
mostcommerciallyavailable16-bitmicroprocessors.

The originalCAPSarchitecture,a multiboardminicomputer,wasdevelopedin 1972andwas
quickly followedby the CAPS-2throughCAPS-10.In 1981,the originalAAMP consolidatedall
CAPSfunctionsexceptmemoryon a singleintegratedcircuit. It wasfollowedby the AAMP2,
AAMP3, and AAMP5. Membersof the CAPS/AAMP family havebeenusedin an impressive
varietyof productsasshownin Table2.1.

Table2.1: Applicationsof the CAPS/AAMP Family

CAPS-4 1974 GlobalPositioningSystem,GeneralDevelopmentModel (GPSGDM)
CAPS-6 1977 Boeing757,767Autopilot Flight DirectorSystem(AFDS)

LockheedL-1011ActiveControlSystem(ACS)
LockheedL-1011Digital Flight ControlSystem(DFCS)
NASAFaultTolerantMultiprocessor(FTMP)

CAPS-8

CAPS-7 1979

CAPS-10 1979

AAMP1 1981

AAMP2 1987

1979 Boeing757,767ElectronicFlight InstrumentationSystem(EFIS)
Boeing757,767EngineInstrumentation/CrewAlerting System(EICAS)
NavstarGlobalPositioningSystem(GPS)
Boeing747-400IntegratedDisplaySystem(IDS)
Boeing747-400CentralMaintenanceComputer(CMC)
Boeing737-300ElectronicFlight InstrumentationSystem(EFIS)
Boeing737-300EngineInstrumentation/CrewAlerting System(EICAS)
Air TransportTrafficCollisionAvoidanceSystem(TCAS)
Air TransportTCASVerticalSpeedIndicator(TVI)
Boeing777Flight ControlBackdrive
CommercialGPS:NavcoreI, NavcoreII, NavcoreV

AAMP3 1992 Boeing777StandbyInstruments
AAMP5 1993 GlobalPositioningSystems,Upgradefor AAMP2

2.3 PVS

PVS (Prototype Verification System) [31] is an environment for specification and verification that

has been developed at SRI International's Computer Science Laboratory. In comparison to other

widely used verification systems, such as HOL [19] and the Boyer-Moore prover [5], the distin-

guishing characteristic of PVS is that it supports a highly expressive specification language with a

very effective interactive theorem prover in which most of the low-level proof steps are automated.

The system consists of a specification language, a parser, a type checker, and an interactive proof

checker. The PVS specification language is based on higher-order logic with a richly expressive type

system so that a number of semantic errors in specification can be caught during type checking.

The PVS prover consists of a powerful collection of inference steps that can be used to reduce a

proof goal to simpler subgoals that can be discharged automatically by the primitive proof steps

of the prover. The primitive proof stepsinvolve,amongother things, the useof arithmeticand
equalitydecisionprocedures,automaticrewriting,andBDD-basedBooleansimplification.

2.4 Related Work

Microprocessor and microcode verification is not new. A number of microprocessor designs have

been formally verified [2, 11, 12, 20, 41]. Microcode verification was pioneered by Bill Carter [25]

at IBM in the 1970's and applied to elements of NASA's Standard Spaceborne Computer [25]; in

the 1980's a group at the Aerospace Corporation verified microcode for an implementation of the

C/30 switching computer using a verification system called SDVS [12]; and a group at Inmos in

the UK established correctness across two levels of description (in Occam) of the microcode for the

T800 floating-point unit using mechanized transformations [1].

Several groups have performed automated verification of non-microcoded processors, of which

Warren Hunt's FM8501 [20] and subsequent FMg001 [21] are among the most substantial. The

problems of pipeline correctness were studied previously by Srivas and Bickford [34], by Saxe and

Garland [30], Burch and Dill [7], and Windley and Coe [42]. a very simple microcoded processor

design developed by Mike Gordon called "Tamarack" serves as something of a benchmark for

microprogram verification and was considered quite a challenge not so long ago [22]. PVS is able

to verify the microcode of Tamarack completely automatically in about five minutes [13].

Other projects have used automatic theorem provers to reason about programs written in low-

level languages. A simple machine is described precisely and the machine code that implements an

operating system kernel is proved to implement correctly several properties needed of an operating

system kernel [4]. Most of the instructions of a 68020 processor have been formalized and some

C subroutines compiled to the 68020 are specified and checked mechanically [6]. Some programs

written for the FM9001 have been proved correct using a theorem prover, including some proved

to achieve desired real-time system properties [39, 40]. Another formalized processor, the MIPS

R3000 [23], has had the implementation of a round-robin scheduler proved correct using a theorem

prover [16]. Such proofs of low-level programs have distinct goals from the AAMP-FV effort, as

none verified the correct operation of microcoded instructions. However, there are many similarities

in the structure of the underlying proofs.

2.5 Formal Verification of the AAMP5

The AAMP-FV project grew out of an earlier effort to verify formally the microcode in another

Rockwell microprocessor, the AAMP5 [27, 37, 35, 38, 36]. The AAMP5 was designed to be object

code compatible with the earlier AAMP2 while providing a threefold improvement in throughput.

The AAMP2 was developed as a general purpose microprocessor for use in a variety of avionics

displays and global positioning systems. It has a large, complex instruction set, supports a variety of

data types, implements in hardware many of features needed to support high-level block structured

languages, and provides extensive support for multi-tasking and error handling.

To obtain a threefold improvement in performance, the AAMP5 implemented the AAMP2

instruction set using internal pipelining and look ahead fetching of both instructions and data.

Since it provides high performance in a general purpose processor, the AAMP5 is one of the

most complex microprocessors to which formal methods have been applied. One measure of the

complexityof a processoris the sizeof its implementation.The AAMP5 containssome500,000
transistors,ascomparedto sometensof thousandsin previousformallyverifieddesignsand 3.1
million in an Intel Pentium.

Evenso, the AAMP5 project succeededin demonstratingthe technicalfeasibilityof the ap-
proach. Over half the AAMP5 instructionset wasformally specifiedat the macroarchitecture
level,andall of the microarchitectureneededfor formalverificationof themicrocodewasformally
specified.The microcodefor eleveninstructions,representativeof severalinstructionclasses,was
provencorrectin the absenceof interrupts.

Anotherkeyresultwasthe discoveryof both actualand seedederrors.Twoactualmicrocode
errorswerediscoveredduring developmentof the formal specificationand removedbeforefirst
fabricationof the microprocessor,illustrating the valueof simplycreatinga precisespecification.
Two additionalerrorsseededby Collinsin the microcodeweresystematicallyuncoveredby SRI
whiledoingcorrectnessproofs.Oneof thesewasanactualerrorthat hadbeendiscoveredbyCollins
after first fabricationbut left in the microcodeprovidedto SRI.The othererrorwasdesignedto
beunlikelyto bedetectedby walk-throughs,testing,or simulation.

Severalother resultsemergedduring the project, including the easewith whichpracticing
engineersbecamecomfortablewith PVS, the needfor libraries of general-purposetheories,the
usefulnessof formal specificationin revealingerrors,the natural fit betweenformal specification
andinspections,thedifficultyof selectingthe beststyleof specificationfor a newproblemdomain,
the high levelof assuranceprovidedby proofsof correctness,and the needto engineerproof
strategiesfor reuse.

2.6 Overview of Processor Correctness

The verification of a microprocessor normally involves specifying the processor as a machine that

executes instructions at two levels -- the macro and the micro level -- and then proving a desired

correctness condition that relates the behavior of the processor at these two levels. The macro level

specification describes the effect of executing an instruction on the state visible to an assembly

language programmer. The micro level specification describes the processor at the register-transfer

level, defining the effect of executing an arbitrary microinstruction on the movement of data between

the registers and other components in the processor's design.

S
Macro - state

F Sv

Abstraction '_

....

Abstraction

fl f2
Micro - state _ _

80 8V

Figure 2.1: Pictoral Representation of Microcode Correctness

Figure 2.1 represents the correct operation of a microcoded instruction. Three kinds of instruc-

tion execution properties are used to formalize the desired processor behavior.

Themostimportantcorrectnesspropertiesarethe commutativity theorems illustrated in Fig-

ure 2.1. These consist of showing that the sequence of microinstructions fl, f2, ..., fn making

up each machine instruction F causes a corresponding change in the micro-state so as F does

to the macro-state So. This is done by defining a function Abstraction that maps elements

of the micro state to elements of the macro-state and proving that F(Abstraction(so)) =

Abstraction (f_ (... (f2 (fl (s0)))...)).

Several assumptions about the initial micro state so are needed to show that the commu-

tativity theorems hold. A micro-state that satisfies these assumptions is called a visible

state, represented in Figure 2.1 with larger circles. Showing that the final micro-state of a

microcoded instruction's execution (micro-state sv) is also a visible state ensures that execu-

tion of the microcode for each machine instruction leaves the processor in the proper state for

the next machine instruction. We call correctness statements of this kind visibility theorems.

Other necessary correctness properties include invariants on each of the sequence of micro-

states so...sv during execution of an instruction. We call correctness theorems of this kind
invariant theorems.

Chapters 4 and 5 describe in greater detail the AAMP-FV macro and microarchitectures and

their specification in PVS. Chapter 6 discusses the theorems proved about AAMP-FV microcode.

Chapter 3

Project Goals and History

This chapter discusses the motivation, tasks, and level of effort devoted to the AAMP-FV project.

3.1 Project Goals

The main goal of the AAMP-FV project was to determine if formal verification of microcode could

be performed in a cost effective fashion for a processor designed for use in ultra-critical applications.

While the earlier AAMP5 project succeeded in demonstrating the technical feasibility and value of

formal verification, the cost was quite high. Simply dividing the total project hours by the number

of instructions verified resulted in a figure of 308 hours per instruction.

Those close to the project understood that this greatly exaggerated the true cost. The AAMP5

project was highly exploratory, making it difficult to determine what portion of the project cost

should be attributed to mastering a new technology and what portion would be incurred using the

same approach on future projects. Large parts of the project were devoted to the development of

supporting libraries, such as the bit vectors, and considerable time was spent by SRI in becoming

familiar with the AAMP5 and by Collins in mastering PVS. In addition, only a few instructions in

each class were verified before moving on to the next class; far more instructions could have been

completed if only one or two classes had been attempted. Finally, time simply ran out before a

large number of the proofs could be completed, even though much of the necessary infrastructure

had been put in place.

To get a better estimate of the true cost of formal verification of microcode, NASA, SRI, and

Collins decided to repeat the experiment with a different processor, the AAMP-FV, to determine if

the expertise gained during the AAMP5 project could be used to bring the cost of formal verification

down to an acceptable level.

An advantage of the AAMP5 project was that formal methods were applied in parallel with

the development of an actual microprocessor. However, this also had its drawbacks. The size and

complexity of the AAMP5 made it a formidable example for mastering formal methods. Also,

while intended for critical applications such as avionics displays and global positioning system, the

AAMP5 was not developed for use in the most critical applications such as autoland and fly-by-wire.

At the conclusion of the AAMP5 project, it was generally felt that if a follow-on effort were to be

undertaken, it should focus on a processor specifically designed for use in ultra-critical applications.

Unfortunately,anactualprocessormeetingthesecriteriawasnot scheduledfor developmentin the
nearfuture.

Asa result,thethe AAMP-FV isa paperandpencildesignof aprocessorrepresentativeof one
that wouldbeusedin ultra-critical applicationssuchasautolandor fly-by-wire.To makeit easier
to verify,either by traditional methodsor by formalmethods,it is simplerthan othermembers
of the AAMP family. It hasa smallerinstructionset,fewerdata typesand addressingmodes,a
flat addressspace,is not pipelined,and prefetchesonly in that readsareperformeda wordat a
timeand a wordmaycontainup to two instructions.Evenso,the AAMP-FV is not a toy design.
If fabricated,it wouldcontainapproximately100,000transistors,ascomparedto some500,000
transistorsin the AAMP5.

3.2 Project History

The main activities of the AAMP-FV project and the level of effort invested in each are shown in Ta-

ble 3.1. Unlike the AAMP5 project, the specification in PVS of the macroarchitecture (instruction

set) and microarchitecture (register transfer level) was well understood by the time the AAMP-FV

project was started and was done almost entirely by Collins. Specification of the AAMP-FV macro-

architecture has taken 130 hours to date and consists of 3,764 lines of PVS covering 54 instructions.

In contrast, development of the AAMP5 macroarchitecture specification took 941 hours, consisted

of 2,550 lines of PVS, and covered 108 instructions [27]. Specification of the AAMP-FV microar-

chitecture took only 90 hours and consists of 3,496 lines of PVS, as compared to approximately

1,100 hours and 2,679 lines of PVS for the AAMP5 [27].

This significant (almost an order of magnitude) reduction in the time to specify the micro and

macro architectures occurred because of the experience gained on the AAMP5, reuse of existing

libraries, and the simpler architecture of the AAMP-FV. Of these, we believe the experience gained

and the reuse of existing libraries, particularly the bit vectors, played the more significant role.

While the simplicity of the AAMP-FV certainly made the initial development of the proofs and

specifications easier, the AAMP5 and AAMP-FV specifications are of roughly comparable com-

plexity. In fact, AAMP-FV macro and micro architecture specifications are actually larger than

the corresponding AAMP5 specifications. This is because 1) much of the complexity of the AAMP5

was avoided by creating property oriented specifications of many components that abstracted away

from internal details not required to prove the correctness of the microcode and 2) the AAMP-FV

is specified in a different style that emphasizes clarity and the use of extensive comments.

On the AAMP5 project, most of the proofs of correctness were done by SRI, with approximately

800 hours spent verifying 11 instructions. A key goal of the AAMP-FV project was to ensure that

Collins became experienced in using the PVS prover. For some classes of instruction, work on the

AAMP5 provided sufficient experience for Collins to complete the proofs. For other classes, SRI

developed the initial proofs and Collins completed the proofs for the remaining instructions in the

class. SRI also focused on proofs that were common to all instructions, such as verifying the logic

for stack adjustment.

As discussed in Chapter 6, the correctness proofs break down naturally into three parts, the

micro correctness proofs that establish the correctness of the microcode at the register-transfer

level, the proofs of common microcode such as that for adjusting the stack cache, and the macro

lift proofs that show that the change at the register-transfer level implements the correct behavior
at the instruction set level.

Table3.1:Levelof Effort

Performed Start Stop Hours
Project Management

Planning Collins Oct 94 Oct 96 83
WeeklyMeetings Collins Oct 94 Oct 96 172

Project Support
Training Collins Mar 95 Aug 96 212
ConfigurationManagement Collins Oct 94 Oct 96 26
ToolSupport Collins Oct 94 Oct 96 48

Specification of the Macroarchitecture (3_693Lines of PVS)
DevelopMacroSpecification Collins Feb95 Jun 95 130

Specification of the Microarchitecture (3_496Lines of PVS)
DevelopMicro Specification Collins Nov94 Feb95 90
TranslateMicrocode Collins Feb95 May 96 77

Proofs of Correctness - Standard Instructions
Micro Correctness

MacroLifts

Collins
SRI

Collins
SRI

Mar 95

Aug95

Oct 95

Mar 96

477
520
238

40
Commonto All Instructions SRI 240
Clean-Up Collins Aug96 Aug 96 69

Proofs of Correctness - Complex Instructions
Micro Correctness Collins

SRI
Oct 95 Jul 96 385

MacroLifts Collins Apr 96 Aug 96 38

A summaryof the AAMP-FV instructionsandtheir proof statusis shownin Table3.2. Fifty-
four of the 80AAMP-FV instructionswereverified.As canbeseenin Table3.1,997hourswere
spenton the micro correctnessproofsand278hourswerespenton the macrolift proofsfor these
instructions.Theproofof theseinstructionswereall similar,andafter the first onein a classwas
completed,couldbedonein a fewhoursfor eachinstruction.In manyways,this work typifiedan
engineeringprocessrather than a exploratoryresearchprogram.

An additional240hourswerespentverifyingmicrocodecommonto all instructions,suchasthe
stackadjustlogic. Whilemanyofthetechniquesdevelopedforverificationof thesimpleAAMP-FV
instructionscouldbeappliedhere,this workwasquiteexploratory.Fortunately,it only hadto be
doneoncefor this project.

During the courseof the project, a numberof proofswerebrokenasthe specificationswere
changedto facilitatecompletionof otherproofs.Ratherthan fixing theseproofsimmediately,they
wereleft until all changeswerecompletedandthenfixedat theendof theproject. Sixty-ninehours
wasspenton this activity.

If training is omitted, 2,074hourswerespentin direct verificationof these54 instructions.

10

Table 3.2: Proofs Completed

Instruction Class

Stack Management 5
Literal Data 5

Reference Data 11

Assign Data 12

Mutual Exclusion 1

Operand Location 1

Logical 4

Arithmetic Integer 10

Fractional

Relational 4

Type Conversion 2
Shift 4

Control Branch 7

Call 1

Exception 3
Return 1

Context Switch 4

Miscellaneous 4

Proof

Completed To Be Done

DUP, DUPD, EXCH, EXCHD, POP

LIT4, LIT16, LIT24, LIT32 LIT8

REF24, REFS, REFA, REFD24,
REFDS, REFDA, REFDL, REFDL4,

REFL, REFL4, REFMSK

ASN24, ASNS, ASNA, ASND24, ASNBIT

ASNDS, ASNDA, ASNDL, ASNDL4,

ASNL, ASNL4, ASNMSK
SWAP

LOCL

AND, NOT, OR, XOR

ABS, ABSD, ADD, ADDD, SUB, IDIV, IDIVD, IMPY, IMPYD
SUBD

FDIV, FDIVD, FMPY,

FMPYD, FMPYE, X5

EQ, EQD, GR, GRD

EXTS TRUNC

SHL, SHLD, SHR, SHRD

SKIP, SKIPS, SKIPF, SKIPFS, SKIPT,
SKIPTS, JUMP24

CALL

CKINTS, CLRINT
RETURN

TRAP, USER
NOP VSN

This gives us an average rate of about 38 hours per instruction, almost an order of magnitude

reduction from the costs observed on the AAMP5 project. We believe the experience gained on the

AAMP-FV project would allow us to cut this cost in half on a similar project.

However, the nature of the project changed qualitatively as the proofs progressed to instructions

with more complex microcode, such as the multiply, divide, shift, call, and return instructions. Most

of the AAMP-FV instructions have microcode simple enough that it can be verified directly through

symbolic execution with PVS (see Section 6.2.1). This technique broke down on the more complex

instructions because the expressions generated through symbolic execution grew too large to manage

with PVS. As a result, the project entered into another exploratory phase as new techniques, such

as proof by induction over the number of microcycles, were developed (Section 6.2.2). While very

valuable, this phase was characterized by a high learning curve and very high costs per instruction.

As with the AAMP5, we believe this cost could be dramatically reduced on subsequent projects.

Currently, the micro correctness and macro lift proofs are largely completed for the 54 instruc-

tions listed in Table 3.2. Of the complex instructions, Collins has completed the micro correctness

11

proofsof the CALL instructionand SRIhascompletedthe micro correctnessproofsof the IMPY
andSHRinstructions.Somesupportingtheoremsthat theseproofsdepend,suchaslemmasinvolv-
ing bit-vectorexpressions,havenot beencompleted.Completionof theseproofshasbeendeferred
becausethey areexpectedto beroutine.1

1In a later phase of the project, SRI completed the proofs of these supporting lemmas, as well as the proofs of

some of the more complex instructions such as CALL and IMPY. These proofs were ran top-to-bottom to ensure no
lemma was left unproved in the proof chain. The axioms in the new specification have not been validated by Collins,
but the proofs have been installed and executed by them. SRI also explored in this later phase ways to automate the

proofs and make them more e_cient. This work is documented in [33].

12

Chapter 4

The Macroarchitecture: The

Programmer's View of the AAMP-FV

The AAMP-FV macroarchitecture is precisely the view of the AAMP-FV that an application pro-

grammer must understand to write assembly code. This section describes the AAMP-FV macro-

architecture informally, then describes how a formal model of the macroarchitecture was defined in
PVS.

4.1 Overview of the AAMP-FV Macroarchitecture

Important features of the AAMP-FV macroarchitecture include its organization of memory, the

process stack, stack cache, internal registers, instruction set, and support for multi-tasking and

error handling. These are discussed in the following sections.

4.1.1 Organization of Memory

The AAMP-FV supports up to four separate address spaces, where each address space consists

of 16M 16-bit words. Unlike the AAMP5, an AAMP-FV memory space is not segmented and is

addressed via a single 24-bit address. Each address space is characterized as being either code or

data memory and user or executive memory.

In a specific product, the system designers may choose whether to use the code/data and

user/exec lines on the processor to associate separate physical memory with each address space. If

they choose to use both lines, a memory access references one of four physical memory banks, one

for each address space. If they choose to use neither line, all memory accesses reference the same

bank regardless of the code/data and user/exec lines, folding the four address spaces onto the same

physical memory. It is also possible to use only the code/data or the user/exec line when accessing

memory, making four memory configurations possible.

4.1.2 Process Stack

As with all members of the AAMP family, the process stack is central to the AAMP-FV macro-

architecture, implementing in hardware many of the features needed to support high-level block

13

Increasing

Memory

Addresses

l

TOS

LENV----_

Caller's PC (LS)

Caller's PC (MS)

Active PROCID

Caller's LENV (LS)

Caller's LENV (MS)

Local 0

Local 1

Local n

Arguments

Prior

Accumulator

Stack

Prior

Stack

Mark

Prior

Local

Environments

Accumulator
Stack

J

Stack
Mark

Local
Environment

Active
Stack

Frame

Calling
Procedure's

Stack
Frames

Figure 4.1: The Process Stack

structured languages and multi-tasking [3]. Each task maintains a single process stack, illustrated

in Figure 4.1.

At the top of the process stack is the accumulator stack used for manipulation of instruction

operands and pointers. Directly below the accumulator stack is the stack mark of the current

procedure. The stack contains the information needed to restore the calling procedure upon return

from the current procedure (Caller's PC and LENV, most significant and least significant words),

to access local variables within the calling procedure (Caller's LENV), and to locate the current

procedure's header and executable code (Active PROCID).

Below the stack mark is the current procedure's local environment consisting of its local variables

and any parameters passed from the calling procedure. A procedure's local environment, stack

14

mark, and accumulatorstackform a stackframe.
is the frameof its callingprocedure,and so on.
decreasingmemoryaddresses.

Beneaththe currentprocedure'sstackframe
Note that the stackgrowsdownwardtowards

4.1.3 Stack Cache

Asastackmachine,theAAMP-FVperformsall datacomputationsandmanipulationsonoperands
that havebeenpushedonto the top of the processstack.To improveefficiency,the top fewwords
of thestackareactuallymaintainedin internalregistersreferredto asthe stack cache. Consistency

between the stack cache registers and external memory is maintained through stack adjustments

that read additional operands into the registers or write operands out to memory prior to the

execution of each instruction. Studies have shown that stack adjustments are not required in about

95 percent of the instructions executed in a typical embedded application. This encachement

technique is an essential performance feature of the AAMP-FV.

Ideally, the stack cache would be invisible to the application programmer. However, in the

interest of efficiency, its presence is made visible to the application programmer in two ways. First,

the AAMP-FV does not check memory accesses to determine if the word being referenced lies in

the vicinity of the stack cache. As a result, REF (reference) and ASN (assign) instructions that

address this region will obtain or modify the actual values stored in memory rather than those held

in the stack cache. In practice, this does not pose a problem since well behaved applications do

not directly read or write to memory used to implement the accumulator stack. Since applications

seldom write assembly code for the AAMP-FV (recall that it is designed for use with high order,

block structured languages such as Ada), this is primarily a concern for the compiler writers.

Second, as the process stack shrinks the words of memory uncovered by the stack may or may

not contain the values the application programmer expects, depending on whether a stack cache

adjustment had reconciled the contents of the stack cache with physical memory. Again, this is

not a problem in practice as application programs should not directly access the area of memory

reserved for the accumulator stack. However, a formal specification of the AAMP-FV requires that

this behavior be captured in the macro-architecture specification as discussed in Section 4.2.4.

4.1.4 Internal Registers

The AAMP-FV maintains several internal registers that are visible to the application programmer

in that they determine how the processor executes each new instruction. The TOS (top of stack)

register points to the topmost word in the process stack. The LENV (local environment) register

points to the local environment of the current procedure and is used in addressing local variables.

The PAGEREG (page register) register maintains the base address used in paged memory ad-

dressing mode. TOS, LENV, and PAGEREG are implemented as 32-bit registers, although only

the bottom 24 bits are used. The PC (program counter) contains the byte address of the next

instruction to be executed and is actually implemented as a 24-bit address register.

In addition, the AAMP-FV maintains the UM (user mode) bit and MASK and INTREG regis-

ters. The UM bit is set high while the processor is in user mode and low while in executive mode.

This value is brought out of the processor via the user/exec line and can be used to distinguish user

and executive mode memory references as discussed in Section 4.1.1. Finally, the INTREG register

holds the status of 8 prioritized interrupts, and the MASK register is used by the application pro-

15

grammerto mask(inhibit) theseinterrupts.Thetwohighestpriority interruptsarenon-maskable,
i.e.,they cannotbe inhibitedby theapplicationprogrammer.

4.1.5 Instruction Set and Data Types

TheAAMP-FV instructionsetconsistsof 80 instructionsand is CISC-like,closelyresemblingthe
intermediateoutput of mostcompilers.Instructionsareaall 8 bits long,yieldinghigh throughput
andcodedensity.Theinstructionsetsupports16-bitand32-bit integers,16-bitand32-bitfractional
number,and 16-bit logicalvariables.

The instructionset canbe dividedinto severalclasses,asshownin Table3.2on page11. Of
the80AAMP-FV instructions,23areReferenceor Assigninstructionsthat movedatabetweenthe
top of the processstackanddatamemory.The Logical,Arithmetic, Relational,TypeConversion,
andShift instructions,whichperformaprescribedoperationon thetop fewelementsof theprocess
stackandpushthe result backonto the stack,accountfor an 30 instructions. An additional12
instructionsdealwith programcontrol,suchasbranch,call, return, andinterrupt handling.The
remaininginstructionsduplicateor moveoperandson the top of the stack,pushliteral dataonto
thestack,supportmutualexclusionandoperandlocation,or performmiscellaneousfunctionssuch
asNOP (nooperation).

4.1.6 Multi-Tasking and Error Handling

The AAMP-FV stackarchitectureis designedfor real-timemulti-taskingapplicationswherethe
processoris time-sharedamongtwo ormoreconcurrenttasks.Eachtaskmaintainsits ownprocess
stackin memory,alongwith a singlestackfor the executive.This providesan efficientmeansto
suspendand resumeeachtask sinceonly the contentsof internalregistersneedto besavedand
restored.If theuser/execline isusedto partition memoryaddresses,theexecutivestackwill reside
in a separatememoryspacefrom theuserstacks.

At systeminitializationor followingasystemreset,the processorisplacedinto executivemode
and beginsexecutionof the executiveprocedure,readingthe addressof the executiveprocedure
andstackfromknownlocationsin memory.Theexecutiveselectsthenextusertaskto beactivated
or resumed,placesthePSD(ProcessStateDescriptor)of theusertaskon the top of the executive
stack,and executesa USERinstructionto initiate a contextswitchto usermode.This consistsof
storingthe processor'sregistersin theexecutivePSD,loadingits registersfromthe the userPSD,
andsettingtheUM bit high. Theprocessorthenstartsexecutionof the usertask, continuinguntil
an interrupt or trap occurs.

Interrupts areasynchronoushardwareinputs to the processor,while traps aregeneratedby
software,usuallythroughexecutionofa TRAP instruction.Theoccurrenceof ahardwareinterrupt
or a TRAP whilein usermodeinitiatesa contextswitchby the processorbackto executivemode,
reversingthe earliercontextswitch.First theUM bit is setlow, theprocessor'sregistersarestored
in the userPSDandloadedfrom the executivePSD,and the interrupt or trap numberis pushed
on the executivestack.Theprocessorthenresumesexecutionof the executiveprocess.

Controlis passedbackandforth betweenthe executiveand usertasksfollowingthis protocol.
Unrecoverableerrorsencounteredwhile in usermode,suchasexecutionof an illegal instruction,
canalsocausecontrolto betransferredbackto the executive.Forexample,executionof theUSER
instructionwhile in usermodeis treatedas an illegal instructionand transferscontrol backto
the executive.Unrecoverableerrorsencounteredwhile in executivemodeplacethe processorin

16

anerror statein which it idlespendingreset.Theseincludeexecutionof an illegalinstructionor
TRAP instructionwhile in executivemode.

Up to eightprioritized interruptscanbestoredin the INTREG register.Of these,the lower
six canbe maskedby the applicationby settingbits in the MASK register,inhibiting transfer
backto theexecutiveevenwhenthecorrespondinginterrupt is pending.Thetwo highestpriority
interruptscannotbemaskedby an applicationtask. An interrupt causinga transferto executive
modeis automaticallyclearedby that contextswitch.TheAAMP-FV alsoprovidesa RST (reset)
linethat canbeusedto causea processorreset.Thiscanbeviewedasthe highestlevelinterrupt.

Interruptsareservicedonly at instructionboundariesand only whilein usermode.Interrupts
that occurwhile in executivemode(otherthan a systemreset)areheldpendingin the INTREG
registeruntil controlis transferredbackto ausertask,at whichtimethey initiatea contextswitch
backto executivemode.Of course,the statusof the INTREG registercanbe interrogatedby the
executiveandtheexecutivecouldbedesignedto avoidswitchingto usermodewhileinterruptsare
pendingif desired.

Exceptions,suchasarithmeticoverflow,donot causeanautomaticswitchto executivemodeas
in the AAMPS. Instead,exceptionsraisethe OVR (overflow)linefrom the processor.This signal
canbeusedonthe externalcircuit boardto raiseoneof the eighthardwareinterrupts,causingthe
exceptionto behandledvia the normalinterrupt handlingmechanism.

17

4.2 Formal Specification of the Macroarchitecture

The macroarchitecture specification formalizes the assembly-level programmer's view of the AAMP-

FV and its instruction set. The PVS specification of the AMMP-FV models the processor as a state

machine. The state of the macro machine includes external memory and the internal state that

affects its observable behavior, such as the internal registers defining the process stack. The next

state function specifies the effect of executing the current instruction pointed to by the program

counter. An overview of the import chain for the macroarchitecture specification is shown in

Figure 4.2.

In PVS, a theory gains access to another theory's definitions and axioms by importing that

AAMP FV
Macro Defn

I
ASNA I CALL TRAP USER RETURN REFA

Macro I • • • Macro • • • Macro • • • Macro • • • Macro • • • MacroDefn Defn Defn Defn De,fn Defn

, ,\ j,

Macro State

Memory

AAMP FV
Bit Vectors

Opcodes

Figure 4.2: Macroarchitecture Specification Hierarchy

18

theory. Each box in the figure represents a theory in the specification. Importation of a theory is

depicted by an arrow from the importing theory to the imported theory.

At the topmost level is the ttMP_FV_macro_defn theory. This theory simply imports the def-

inition of each instruction, each of which is defined in its own theory. The majority of these are

defined directly in terms of the change they cause in the macro architecture state, defined in the

macro_state theory. A few of the more complex instructions, such as TRAP and USER that involve a

context switch, import additional definitions such as the executive_service_routines. Since the

macroarchitecture state includes external memory, the macro_state theory imports the definition

of memory, which in turn imports the definition of AAMP-FV specific bit vectors. Although it

is not shown in Figure 4.2, the ttMPFV_bit_vectors imports the bit vectors library in which the

detailed properties and operations of bit vectors (i.e, sequences of bits) are defined. The macro_

state theory also imports the definition of the AAMP-FV opcodes. The following sections discuss

these theories in greater detail.

4.2.1 Bit Vectors

The hhMPFV_bit_vectors theory, shown in Figure 4.3, defines some of the most common bit vector

types and constants used in the specification of the AAMP-FV. Another important role of this

END AAMPFV_bit_vectors

Figure 4.3: PVS Specification of AAMP-FV Bit Vectors

19

theoryis to provideasinglepoint for importingthe bit vectorslibrary,via theorybv_top,in which
therepresentationandoperationsof thebit vectorsaredefined.Operationssuchasconcatenation
(o), extraction (A), addition (+), and subtraction(-) of bit vectorsare definedin this library.
AAMP-FV specificfunctions,suchasr2a that convertsa 32-bit registerto a 24-bit addressand
a2rthat convertsa 24-bitaddressto a 32-bitregister,aredefinedin termsofthe morefundamental
extractionand concatenationoperations.Detailsof the bit vectorsand their operationscanbe
foundin [10].

4.2.2 Memory

As discussedin Section4.1.1,AAMP-FV memorycanbeconfiguredin four differentwaysby the
systemdesigner.ThePVSspecificationof AAMP-FVmemory,shownin Figure4.4definesall four
possibleconfigurations.

A memory space is defined as a function mapping 24-bit addresses into 16-bit words of memory.

Memory itself is defined as four memory spaces, where each memory space is indexed by two boolean

values representing the value of the code/data and user/exec lines. All accesses to memory are then

written in terms of two functions, read and write. Read takes an address, specified as a value of

the code/data line, user/exec line, and a memory address, and returns a word of memory. Write

takes a similar address triple and a word and updates memory at the specified address. Whether

the memory interface unit uses the code/data or user/exec lines to partition memory is encoded

in two boolean constants, separate_code_data_memory_spaces and separate_user_execnmemory_

spaces. Ifboth of theseconstantsare true,then both the code/data and user/execarguments to

read and write are used to directaccessto the appropriatememory space.Ifboth are false,then

the code/data and user/exec arguments are ignored and only the (false,false) partition is ever

accessed. Two additional configurations can be modeled by setting one of the constants true and
the other false.

The actual values of separate_code_data_memory_spaces and separate_user_execnmemory_

spaces are left as unspecified constants. In this way, the correctness proofs are valid regardless of

which memory configuration is chosen by the system architect. This typically manifests itself as

one or two additional proof branchs in the macro-lift proofs (Section 6.4).

4.2.3 Macroarchitecture State

The macroarchitecture state defines the portion of the AAMP-FV state seen by the application pro-

grammer. Its specification in PVS is given in theory macro_state shown in Figure 4.5. The macro-

architecture state consists of an instantiation of memory (defined in Figure 4.4), the PAGEREG,

TOS, PC, LENV, MASK, and INTREG registers, and the UM flag (described in Section 4.1.4).

Also included in the macro_state theory are a number of auxilliary functions closely related

to the macroarchitecture state. For example, fetch returns a byte of code memory located at a

specific byte address. Note that it right shifts the byte address to form a word address, uses the

read function to retrieve that word of code memory, and then uses the low-order bit of the address

to select the appropriate byte of the word retrieved. This function is typically used to reference

bytes of immediate data using the PC as an operand. Defining it once here avoids repeating this

operation throughout the macroarchitecture specification. Top is another useful function; it returns

the ith word from the top of the process stack. The next_macro_state function is discussed in the
next section.

20

memory: THEORY

BEGIN

IMPORTING AAMPFV_bit_vectors

% A memory space is a function from a 24-bit address to words of memory.

Memory consists of four memory spaces indexed by the values of the

code/data and user/exec lines.

..

memory_space : TYPE = [address -> word]

memory : TYPE = [[bool,bool] -> memory_space]

% The two following boolean constants determine which of the four possible

memory models is used. They are deliberately left unspecified.

..

separate_code_data_memory_spaces: bool

separate_user_exec_memory_spaces: bool

% Write updates a word in one of the four memory spaces.

..

write(cd: bool, ue: bool, a: address, w: word, m: memory) : memory =

IF separate_code_data_memory_spaces

THEN IF separate_user_exec_memory_spaces

THEN m WITH [(cd,ue)(a) := w]

ELSE m WITH [(cd,false)(a) := w]

ENDIF

ELSE IF separate_user_exec_memory_spaces

THEN m WITH [(false,ue)(a) := w]

ELSE m WITH [(false,false)(a) := w]

ENDIF

ENDIF

% Read retrieves a word from one of the four memory spaces.

..

read (cd: bool, ue: bool, a: address, m: memory) : word =

IF separate_code_data_memory_spaces

THEN IF separate_user_exec_memory_spaces

THEN m(cd,ue)(a)

ELSE m(cd,false)(a)

ENDIF

ELSE IF separate_user_exec_memory_spaces

THEN m(false,ue)(a)

ELSE m(false,false)(a)

ENDIF

ENDIF

END memory

Figure 4.4: PVS Specification of AAMP-FV Memory

21

macro_state: THEORY

BEGIN

IMPORTING memory, opcodes

macro_state: TYPE = [# mem : memory,

pagereg : register,

tos : register,

pc : address,

lenv : register,

urn : bool,

mask : byte,

intreg : byte #]

% Memory

% Base address for paged data

% The top of the process stack

Program counter

Local environment

User/executive mode

Interrupt mask

Interrupt state.

% Fetches the byte of code memory at byte address a

..

fetch (ue: bool, a:address, m:memory): byte =

LET w = read(code, ue, fill[l](0) o a^(23,1), m)

IN IF ishigh(a^0) THEN w^(15,8) ELSE w^(7,0) ENDIF

Returns the ith word from the top of the process stack.

..

top(st:macro_state, i:nat):word = read(data, nm(st), r2a(tos(st))+i, mem(st))

..

Defines the next state of the macro machine.

..

next_macro_state: [macro_state -> macro_state]

END macro_state

Figure 4.5: PVS Specification of AAMP-FV Macroarchitecture State

4.2.4 Next Macro State Function

Each AAMP-FV instruction is specified in PVS as a state transition function, next_macro_state,

over the macroarchitecture state defined in Figure 4.5. For convenience, the specification of each

instruction is placed in a separate theory. For example, the specification of the REFA instruction

is given in theory REFAnnacro_defn shown in Figure 4.6. The REFA instruction pops two words off

the top of the process stack, concatenates them together and uses the lower 24 bits as the address

WAof a word of memory XS to be read and placed on the top of the stack. The axiom in Figure 4.6

states that if the current opcode is REFA and the word address WAand program counter do not lie in

the region of the stack cache, the new macro state is the current macro state st with an unspecified

22

KEFA_macro_defn [(IMPORTING AAMPFV_bit_vectors)

unspecified: [nat -> word]] : THEORY

BEGIN

IMPORTING macro_state

st: VAR macro_state

The KEFA instruction uses the double word that is at the top of the

stack as the absolute address for a single precision read, pushing the

word read on the stack.

...

REFA: AXIOM

(current_opcode(st) = KEFA

not_stack_cache_address(st)(WA)

pc_not_in_cache_region(st) =>

next_macro_state(st) =

(st WITH [(mem) := write(data, urn(st), r2a(newtos-l), unspecified(0),

write(data, urn(st), r2a(newtos), XS, mem(st))),

(pc) := pc(st) + 1,

(tos) := newtos]

) WHERE XS = read(data, um(st), WA, mem(st)),

newtos = tos(st) + I

) WHERE WA = (top(st,l) o top(st,0))^(23,0)

END KEFA_macro_defn

Figure 4.6: PVS Specification of REFA instruction

word written at the old top of stack (newtos - 1 1), the word XS located at memory location WA

written at the new top of stack location (newtos), the program counter pc incremented by one,

and the top of stack pointer tos set to its new value (tos(st) + 1).

The presence of the stack cache is visible in the REFA instruction in both of the ways mentioned

in Section 4.1.3. First, as indicated by the not_stack_cache_address and pc_not_in_stack_cache_

region predicates in the antecedent, the behavior of the instruction is not specified if the word

being referenced or the program counter lie in the vicinity of the stack cache. Second, the word of

memory uncovered by the shrinking of the process stack has been set to an unspecified word. Both

the predicates not_stack_cache_address and pc_not_in_stack_cache_region and the function

unspecified are left uninterpreted in the macroarchitecture specification. Thus the application

programmer knows only that he can make no assumptions about the REFA instruction if the word

being referenced or the program counter lies in the vicinity of the stack cache (conservatively taken

to be at least the top 6 words of the stack). In similar fashion, he knows only that he will find some

word, unspecified(0), in memory at the location previously occupied by the top of the stack, but

cannot make any assumptions about the value of that word.

1Recall that the stack grows downward and two address words were popped prior to pushing the referenced word

onto the stack.

23

At themicroarchitecturelevel,thevaluesof thesefunctionsaredefinedandareusedto complete
theproofsof correctness.Thenot_stack_cacheandpc_not_in_stack_cache_regionfunctionsare
preciselydefinedin termsof internal registersnot visibleto the applicationprogrammerand the
functionunspecified is instantiatedwith the actualvaluethat will be foundat that locationin
orderto takethe proof to completion.

24

Chapter 5

The Microarchitecture: The Register
Transfer View of the AAMP-FV

5.1 Overview of the AAMP-FV Microarchitecture

The microarchitecture specification describes the AAMP-FV at the register-transfer level, i.e, it

specifies the effect of an arbitrary microinstruction on the movement of data between the registers

and other components of the AAMP-FV. An overview of the microarchitecture is shown in Fig-

ure 5.1. The AAMP-FV microarchitecture can be divided into three main parts: the data path,

the microcontroller, and the bus interface unit.

5.1.1 The Data Path

The data path provides the data manipulation and processing functions required to execute the

AAMP-FV instruction set. It consists of a 16-word multi-port register file, a 32-bit arithmetic logic

unit (ALU), shift logic, data and address interface, address incrementors, and instruction register

and parsing logic. To make address computations fast and to support double-precision arithmetic

instructions efficiently, internal data paths are mostly 32-bits wide.

The register file is a key element of the microarchitecture. Its multiport design is important in

achieving the parallelism needed for high execution speed and compact microcode. The register file

contains the program counter (PC), Q register used in shift operations, interrupt mask (MASK),

top of stack (TOS), local environment (LENV), page register (PAGE), four scratch pad registers

(R0-R3), and the stack cache registers (STK0-STK5). Any of these registers can be output on the

32-bit A and B ports by providing the appropriate values to the A and B address inputs. Separate

ports are provided for shifting the Q register, providing a mask to the interrupt controller, and for

external address generation.

Register file entries STK0 through STK5 comprise the stack cache and can contain up to six

16-bit operands from the top of the process stack, with the remainder of the stack residing in

external memory. Since these registers are addressed and output in pairs, 32-bit operands can be

processed just as efficiently as 16-bit operands.

Single position shifts to the left or right are provided. Eight shift linkages provide efficient

implementation of integer and fractional multiplication and division as well as shift instructions.

25

direct

=[/

I StackVector

Put/PullROM

Register File

ol PC

Q

0 IMASK

TOS

LENV

PAGE

R0

R1

R2

R3

Stack Cache

STK4 STK5

STK3 STK4

STK2 STK3 B[15:0]
STK1 STK2

STK0 STK1

STK5 STK0 A[15:0]

PC _[+0 +1 +2[

+0+1 I

Shifter I

Shifter [

B[al:161

A[31:16]

code addr

data addr

ADDRESS

-_ Data Reg

Inst Reg _--

Parser [

I
data byte

_ wolrd

I

opcode

DATA

1 t "'" tt
I Microinstruction Register]

Control Store ROM

MASK

1
Priority

Interrupt

Controller
I i INT7

INT0

_

Figure 5.1: The AAMP-FV Microarchitecture

26

The ALU provides addition, subtraction, and logical operations on 32-bit bit-vectors. It also

provides indications of sign, all-zero, carry, and 16-bit and 32-bit overflow. The R and S inputs

to the ALU are fed from multiplexing logic that allows the inputs to be drawn from a number of

different sources, including variations of the register file outputs, 16-bit data read from memory,

immediate byte and word fields from the instruction stream, and microconstants.

5.1.2 The Microcontroller

The microcontroller consists of the microcode ROM, the logic to sequence and execute microin-

structions, and the stack adjust and interrupt logic.

The AAMP-FV is a microprogrammed machine wherein control is via a stored program in

ROM rather than discrete logic. This results in two levels of stored program in a system: one at

the micro level using microinstructions in the control-store ROM, and the other at the macro level

using machine language instructions stored in external code memory. In essence, each machine

language instruction is interpreted as a pointer to a sequence of microinstructions to be executed.

Each microinstruction causes one or more elemental operations to occur in the machine, such as

enabling a register to be loaded or selecting an ALU function to perform.

Instruction bytes are fetched from code memory two at a time and stored in the instruction

register. Execution begins with the translation of the opcode byte into a starting microprogram

address. The microinstruction at this location is then loaded into the microinstruction register, the

outputs of which configure the data paths and determine which operations are to occur during the

current microcycle.

While the current microinstruction executes, the microsequencer determines the address of the
next microinstruction to be executed. This can be the address of the current microinstruction

incremented by one, a jump address contained in the current microinstruction, a saved register

loaded from the microprogram counter to establish return linkage from a called microsubroutine,

or fixed addresses for initialization, interrupt servicing, and stack cache adjustments. In some cases,
the next microinstruction is conditional on the the state of selected status line.

Completion of the microprogram associated with the current machine instruction repeats this

cycle, causing the address associated with the next opcode to be loaded into the microsequencer.

An exception to this occurs when an interrupt is pending.

Interrupts are processed only at completion of the current machine instruction. While the

current machine instruction executes, up to eight prioritized interrupts can be captured in an

8-bit register. Once the current machine instruction completes, the microcontroller checks if an

unmasked interrupt is pending. If so, it selects the microaddress of the highest priority interrupt

service routine for execution. Each interrupt is reset when it is processed, and once all interrupts

are processed execution resumes with the next machine instruction.

The microsequence for each instruction assumes that sufficient operands are present in the stack

cache for the instruction to execute and that sufficient room is present in the stack cache to hold
the outcome of the instruction. The current status of the stack cache is maintained in the stack

vector register. At the start of each machine instruction, the microcontroller feeds the opcode and

the stack vector into the Put/Pull ROM, which determines if a stack adjustment is necessary. If

an adjustment is needed, the microcontroller enters one of two microsequences that either reads

an operand from memory into the stack cache or writes a word from the stack cache into memory.

Upon completion of this microsequence, the microcontroller restarts the machine instruction.

27

5.1.3 The Bus Interface Unit

The bus interface unit (BIU) contains the logic needed to move data between the AAMP-FV and

main memory, including the functions of bus arbitration, address generation, and data parsing.

Data is read or written to memory using the lower 24 bits of the Q register to address memory.

When writing, the operand is selected from either the high or low 16-bits from the register file's A

port, simplifying the handling of both single and double precision writes. Data read from memory

is passed to the ALU as an S source. The register file also supports separate loading of the high

and low halves of 32-bit destinations, accommodating the efficient transfer of 32-bit operands into

the processor.

Instructions are fetched from code memory into the instruction register two bytes at a time.

These may consist of any combination of opcodes or immediate data. Opcodes are passed to

the microcontroller to initiate instruction execution. Immediate data bytes are fed to the ALU

as S-source operands. Since instructions are one byte in length, the 16-bit instruction register

provides partial look-ahead. When it is time to fetch an instruction, conditional logic first checks

to determine if the instruction is already present in the instruction register from the prior fetch.

The program counter is a 24-bit byte address. Since it is a byte address, must be shifted right

one bit with a fill of zero to form a word address with the least significant bit of the original

PC selecting between the high and low byte returned from memory. As a result, although the

AAMP-FV has a 224 word address space, programs can only reside in the lower half of the address

space.
Several AAMP-FV instructions use immediate data embedded in the instruction stream. To

maintain code density, immediate data is not required to be word aligned. To avoid manipulating

this data in the ALU, the BIU parses and extracts it from the instruction stream.

The BIU communicates with memory via several signals. The two primary transaction control

signals are the transaction request signal and the read/write line. The transaction request signal

indicates when the AAMP-FV is ready to perform a memory transaction. The read/write line

establishes whether the transaction is a read or write request. The exec/user line indicates the

mode (executive or user) of the processor and the code/data line indicates if the transaction is a

code (or immediate data) fetch or a data memory transaction. The exec/user line and the code/data

line can be used by external memory to select different memory spaces. The address of the desired

word within this memory space is indicated by a 24-bit address bus. Data is transferred over the
16-bit data bus.

5.2 Formal Specification of the Microarchitecture

The PVS microarchitecture specification is a formal description of the the AAMP-FV microar-

chitecture and microcode. Each major component of the microarchitecture, such as the ALU or

the register file, is described in one or more PVS theories. These specifications, together with a

variety of "glue" theories describing the data and control paths between the components, define
the microarchitecture over which the microcode executes. Translation of the microcode into PVS

results in a specification that defines how the microarchitecture state and memory are altered by
the execution of each microinstruction.

The microarchitecture specification describes the AAMP-FV from the perspective of a mi-

crocode programmer and abstracts away some of the details of an actual hardware implementation.

28

For example, time is modeled in the microarchitecture using the natural numbers, where one unit

of time corresponds to one microcycle, i.e., the execution of one micro instruction. However, in an

actual implementation, each microcycle would consist of one or more clock cycles, or phases. Thus,

even though a memory read or write may actually take an indeterminate but finite amount of time,

to the microcode each memory access takes one cycle. By abstracting away from the physical clock,

it is possible to provide a more concise definition of the microarchitecture and simplify the proofs.

Every flip-flop, wire, register, and bus in the AAMP-FV microarchitecture is defined as a signal

of some type, where a signal is a function from time to a type such as a bit or a bitvector. Some

signals represent elements of the current "state" of the microarchitecture such as registers and

external memory. Other signals represent "connectors", such as bus lines, and are defined as a
combinatorial function of the current state.

At least two styles are commonly used in the formal specifications of hardware. In the functional

style, one defines the output signals of a component as functions of its input signals, letting the

signal definitions implicitly specify the connectivity between the components. In the predicative

style [18] commonly used in HOL [19], every hardware component is specified as a predicate relating

the input and output signals of the component. A design is specified in the predicative style as a

conjunction of the the component predicates, with signals on the internal wires used to connect the

components hidden by existential quantification.

The functional style of specification has several advantages in PVS. In particular, proofs are

able to exploit the automatic rewriting capabilities of PVS and tend to be more automatic than

when the specification is written in a predicative style. However, there are some difficulties with

using the functional style in PVS. The first is that a name cannot be used until it is defined,

making it difficult to model the feedback found in sequential circuits. It is also difficult to define

a hierarchy of circuit blocks. Hierarchy can be emulated using parameterized theories, where the

theory parameters represent the circuit inputs, but no similar mechanism is available for defining

the circuit outputs.

To address these issues, the AAMP-FV specification is based on the notion of a "backplane"

rather than a hierarchy. The backplane consists of a theory SIG that defines the name and type

(but not the functional behavior) of all the registers, flip-flops, and connecting signal in the AAMP-

FV. In this way, signals can be referenced even though their functional behavior has not yet been
defined.

Each major functional block is described in its own theory. To connect the functional blocks to-

gether, three special purpose parameterized theories are defined, CONNECT, DFF, and DFFR. CONNECT

(Figure 5.2) has three parameters, a type and two signals of that type, and states axiomatically

that the second signal is equivalent to the first. DFF has the same parameters as CONNECT, but

states that the value of the second signal at time (t+l) is equivalent to the value of the first at time

t. DFF thus defines a D-type flip flop, where the first signal is the D input and the second is the Q

output. The DFFR theory defines a resettable D-type flip flop and adds parameters for a value to

which the flip flop is reset and a reset signal.

In this way, the SIG theory serves as a "backplane", making the definitions of the signal available

wherever they are used in the microarchitecture specification. CONNECT is used to define a direct

connection between two signals, DFF is used to connect two signals through a flip-flop, and DFFR is

used to connect two signals through a resettable flip-flop.

Figure 5.3 shows the definition of the Next_PC (next program counter) register. Immediately

following its functional specification is the instantiation of theory PC that connects the Next_PC

29

CONNECT [(IMPORTING AAMP_FV_basics)

sig_type : TYPE,

A : signal [sig_type] ,

B : signal [sig_type]

] : THEORY

BEGIN

t : VAR time;

C0NNECT: AXIOM B(t) = A(t)

END C0NNECT

Figure 5.2: PVS Specification of CONNECT

Next_PC (t) : bvec[24] = IF LPC(t) THEN

V(t)^ (23,0)

ELSE

CASES PQ(MC(t)) OF

PC : NxPC (t),

PCplusl : NxPC(t),

PCplus2 : NxPC(t)

ELSE PC (t)

ENDCASES

ENDIF

PC: THEORY = DFFR[bvec[24] ,Next_PC,PC,bvec0124] ,RST]

Figure 5.3: PVS Specification of the Next PC Register

register to the PC register through a flip-flop that can be cleared by the RST signal. The other

names in this specification fragment, such as LPC, V, and MC are all signals named in SIG and

defined in other parts of the microarchitecture specification.

Use of theories such as CONNECT, DFF, and DFFR reduced the complexity of the proof scripts

by making it simple to load the connections as auto-rewrites. For example, to cause the PC-Next_PC

connection to be treated by PVS as an automatic rewrite rule during a proof, it is only necessary

to issue the prover command (auto-rewrite-theory "PC"). This makes the proof script more

readable and manageable for the engineer performing the proof.

Specifying the microarchitecture with a "backplane" reflected the actual design of the AAMP-

FV, making construction of the formal model straight forward. As pointed out in Section 3,

specification of the microarchitecture was completed in approximately 90 man hours. The functional

style also reduced the likelihood of introducing inconsistencies in the specification. Although the

30

DFF andCONNECTtheoriesareaxiomatic,theyareusedin a controlledmannerthat minimizes
thepotential for error.

The microarchitecturespecificationof the AAMP-FV is very similar to what an HDL spec-
ification of the processorwould look like. In largepart, this is dueto the languagefeaturesof
PVSthat map readilyto similarHDL constructs.This hasimportant benefitswhenworkingwith
engineersunfamiliarwith formal specificationlanguages,sincethey canreada PVSspecification
andunderstandwhat is beingsaidwithout extensivetraining.

5.3 Formal Specification of the Microcode

The microcode for the AAMP-FV was translated by hand into PVS. An example for the REFA

instruction is shown in Figure 5.4. While the PVS representation is not easily read (except by an

AAMP-FV microcode programmer), it has the advantage that it was generated from the original

microcode by a very straight forward process. In future projects, it would not be possible to build a

translator that would generate the PVS representation automatically from the original microcode.

31

ucode__EFA : THEORY

BEGIN

IMPORTING EPbasics

IMPORTING Put Pull R0M basics

IMPORTING micro macrodefns

%% Define the Entry Point

_EFAep : AXIOM EP 0F(REFA) = EP REFA;

%% Define the Entry Condition

PP _EFA: AXIOM PP ROM(_EFA) = Pullif 0Clt2

%% Define the Microcode

_EFAinstrn: AXIOM uROM(EPREFA) =

FeqR(

ReqSVminusl_0(

INC_PCandCFETCH(

JMP(REFSI, default_minstrn))))

WITH [(DN) := QgetsF,

(PP) := POP2]

END ucode_REFA

%% IF(SV>I)DO

%% F<-R

%% R<-VMI:V

%% FCON+I

%% => REFSI

Figure 5.4: PVS Specification of the REFA Microcode

32

Chapter 6

Formal Verification of the AAMP-FV

6.1 Overview

Section 2.6 discussed the kinds of theorems to be proved in verifying the microcode of a micro-

processor. In this section we describe the specific theorems proved about the AAMP-FV. Sec-

tions 6.2, 6.3, and 6.4 describe in detail what has been proven about the AAMP-FV microcode

using PVS.

6.1.1 Commutativity Theorems

Most of the effort spent proving the correctness of the AAMP-FV microcode focused on verification

of the commutativity theorem (illustrated in Figure 6.1) relating the microarchitecture and macro-

architecture models described in Chapters 4 and 5. The proof of the microcode commutativity

theorem divides naturally into three parts.

S
Macro State

Abstraction

fl _ A f2 _

Next Macro State

Micro State

so Microcode SN StackAdjust

Sv

Abstraction

SV

Figure 6.1: Overview of the Correctness Proof

The micro correctness proofs verify the correctness of the microcode at the microarchitecture

(register-transfer) level, showing that the microcode executing on the microarchitecture specifica-

tion satisfy several micro correctness lemmas describing how it changes the microarchitecture state.

These proofs correspond to the lower sequence of micro instruction steps from microstate so to SN

in Figure 6.1.

The macro lift proofs use these lemmas to show that the microcode correctly implements the

33

behaviorspecifiedat themacroarchitecturelevel.Thisisdonebyshowingthat theeffectofmapping
the initial microstate80into macrostateSo via the Abstraction function and applying the next_

macro_state function results in the same macrostate as mapping microstate 8N into macrostate

Sv via the Abstraction function.

The micro steps from state 8N to 8V consist of the stack adjustment logic performed prior to each

instruction to ensure that the correct number of operands are in the stack cache and that there is

room in the stack cache for instruction results. Stack adjustments are not visible at the instruction

set level and thus have no effect on the macrostate. Proof of the correctness of the stack adjust

logic in support of the commutativity theorem only needs to be done once and involves showing

that both the microstates 8N and 8v map to the same macrostate Sv via the Abstraction function.

6.1.2 Visibility Theorems

As described in Section 2.6, the visibility theorems define another set of properties to be proven

about each instruction. The initial microstate s0 in Figure 6.1 is assumed to satisfy these conditions.

To achieve this, the visibility conditions must be shown to hold at processor initialization and at

the end of each instruction at time tv.

There are actually four visibility conditions to be shown for each instruction. The first requires

that the instruction entry conditions be met, i.e., that the stack cache contains sufficient operands
for the current instruction and that there is room in the stack cache for the instruction results. The

second mandates that the code word pointed to by the program counter is actually loaded into the

instruction register IR. The third ensures that the first line of microcode for the current instruction

is loaded into the microcode register MC. Finally, the last condition guarantees that an invariant

between the empty stack cache signal and a pointer SV into the stack cache is met. The visibility

conditions are discussed in more detail in the following sections.

6.1.3 Invariant Theorems

Only one kind of invariant property (Section 2.6) has been proved about the AAMP-FV microcode,

that the interrupt register correctly accumulates and remembers interrupts during instruction ex-

ecution (see Section 6.2.1.4). While there are other interesting invariant properties that could be

shown (e.g., that the overflow line is not asserted during instruction execution), the focus of this ef-

fort has been on the commutativity and visibility theorems. Proofs of additional invariant theorems

may be undertaken in future efforts.

6.2 The Micro Correctness Proofs

This section discusses the micro correctness proofs, corresponding to the sequence of micro instruc-

tion steps from microstate so to SN in Figure 6.1. For each instruction, the result of executing its

microcode is expressed as one or more lemmas, which are later used in the verification of the com-

mutativity theorem. The proofs of these lemmas deal with data-dependent instruction execution

times, branches, and loops, effectively separating these details from the macro correctness proofs

and helping to compartmentalize the proofs, making them easier to manage. For engineers familiar

with the AAMP-FV, these correctness conditions are quite easy to understand and completion

34

of the micro correctnessproofsprovidea high degreeof assurancethat the microcodeis indeed
correct.

Most of the AAMP-FV instructionshavemicrocodethat that is similar and canbe verified
by followinga standardpattern. However,a fewinstructionshavemorecomplexmicrocodeand
requiremoresophisticatedproofstrategies.Forthis reason,thediscussionof themicrocorrectness
proofsis brokenup into two parts,the proofof thestandardAAMP-FV instructionsandthe proof
of complexAAMP-FV instructions.

6.2.1 Standard AAMP-FV Instructions

TheREFA instructiondiscussedin Section4.2.4is usedto illustratethe microcorrectnessproofs
for the standardAAMP-FV instructions.The micro correctnessproofsfor theseinstructionsare
organizedinto separatePVStheories,with theREFA_rnicro_correcttheorybeingtypical. Usinga
standardformat for all instructionseasedthe creationof the micro correctnessstatementfor each
newinstructionand simplifiedthe macrocorrectnessproofs.

6.2.1.1 The Micro Correctness Theory

Each micro correctness theory begins with the parameterization of the theory with the time tO and

the assumptions the theory makes about that time, as shown below for REFA.

REFA_micro_correct[(IMPORTING time) tO: time]: THEORY

BEGIN

ASSUMING

IMPORTING correctness_predicates

assume_current_op: ASSUMPTION current_op(t0) = REFA

assume_visible: ASSUMPTION visible(t0)

assume_normal_operation: ASSUMPTION normal_operation(t0)

ENDASSUMING

Three distinct points in time are defined at the microarchitecture level for each instruction:

tO, tN, and tV, corresponding to the microstates so, SN, and sv in Figure 6.1. The first of these,

tO, represents the time at which instruction execution begins and each micro correctness theory is

parameterized by this value. Time tO is treated as a constant within the micro correctness theory,

but outside of this theory it can represent any time that satisfies the constraining assumptions. The

assumptions are used in proving the micro correctness lemmas, and PVS generates proof obligations

to show that each assumption holds whenever the micro correctness theory is instantiated.

The first assumption shown above asserts that the opcode at time tO is REFA. The proof

obligation generated by this assumption is easily discharged at the next higher level in the proof
structure.

35

The secondassumption,assume_visible,bringsin the visibility conditionsdiscussedin Sec-
tion 6.1.2.Its definitionis

visible(t): bool =

entry_conditions_met(t) and

code_word_fetched(t) and

instruction_loaded(t) and

stack_invariant(t)

The first predicate, entry_conditions_met, holds if the stack cache contains an appropriate

number of entries for the current instruction to execute. This is indicated by the microarchitecture

when the stack adjust line is not asserted, i.e., the micro architecture component ADJUSTA_ is true.
It is defined as

entry_conditions_met(t): bool = ADJUST_F(t)

The code_word_fetched condition requires that the instruction register contains the word from

code memory pointed to by the program counter and is defined as

code_word_fetched(t): bool =

IR(t) = read(code, UM(t), wordPC(t), MEMORY(t))

The instruction_loaded condition ensures that the microcode register (MC) contains the

microcode ROM entry pointed to by the entry point of the currently requested operation.

instruction_loaded(t): bool =

MC(t) = uROM(EP_OF(current_op(t)))

The last predicate in the visible assumption, stack_invariant, specifies an invariant between

the signal SKMT(t), which is true when the stack cache is empty, and the register SV, a pointer

into the stack cache. Since the value of SV is maintained by the microcode, the micro correctness

theory assumes that the previous instruction maintained this invariant.

The last assumption made by the micro correctness theory, normal_operation, ensures that the

reset (RST) and end of built-in self test (ENDB) lines are not asserted during instruction execution.

normal_operation(t): bool =

stays_low(ENDB)(t,end_of_current_instruction(t)) AND

stays_low(KST)(t,end_of_current_instruction(t))

The normal_operation assumption thus asserts that the ENDB (end of builtin self-test) and

RST (reset) signals stay low from time tO to end_of_current_instruction(t0), a function that

defines the time tV corresponding to micro state sv in Figure 2.1. Note that while the micro

correctness theory must make assumptions about the RST and ENDB lines, similar assumptions

are not needed to deal with interrupts since the AAMP-FV only processes interrupts at instruction
boundaries.

The next section of a micro correctness theory defines various points in time during the instruc-

tion execution. The uninterpreted function end_of_current_microcode defines the time at which

the last line of microcode for the current instruction executes. Even though this function may be

data dependent, it is always computable based upon the state of the processor at time tO. In the

36

REFAexampleaboveit is definedto haveavalueof tO + 1at timetO. Fornotationalconvenience,
end_of_current_microcode(t0) is aliasedto TC.

REFA_TC: AXIOM

end_of_current_microcode(tO) = tO + I

TC: time = end_of_current_microcode(tO)

tC: VAR {t:time I t = TC}

TN: time = end_of_current_microcode(tO) + I

tN: VAR {t:time I t = TN}

tR: VAR {t:time] t >= tO and t <= end_of_current_microcode(tO)}

Time TN, corresponding to the microstate SN in Figure 2.1, is the time at which the instruction

specific microcode completes execution and the results are loaded into the state registers of the

AAMP-FV. For the REFA instruction, TN is equal to TC + 1. The variable tN is defined and used

throughout the specification because it is helpful to use the correctness statements generated within

this theory at a higher level as auto-rewrites. Defining tN to be a logical variable with only one

possible value (tN) facilitates this during the proofs. The variable tR is defined to make it more

convenient to define properties which hold for the duration of the instruction.

The rest of the micro correctness theory states the correctness lemmas to be proved. For

example, the REFA_Sg_correct lemma states that the stack occupancy when the REFA instruction

is complete will be one less than the occupancy at the beginning of instruction execution.

KEFA_SV_correct : LEMMA

occupancy(tN) = occupancy(tO) - I

The REFA_STACK_correct lemma states that the top element of the stack following the execution

of the REFA instruction will contain the word read from the memory address address formed from

the top two elements of the stack at the start of the instruction. The function stack(t) (n) returns
the nth element of the stack cache at time t.

KEFA_STACK_correct : LEMMA

((stack(tN)(O) = XD)

WHERE

WA = (stack(tO)(1) o stack(tO)(O))^(23,0),

XD = read(tO) (WA))

The REFA_UNUSED_correct lemma defines what happens to stack cache elements not affected

by the execution of the REFA microcode. Note that the index j ranges from 2 to one less than the

occupancy of the stack cache at time t0. This is because the REFA instruction pops two words

off the stack to create an address, then reads the word at that address and pushes it on the stack.

This lemma states that any elements of the stack cache at time t0, other than the top two words

used to construct the address, will be in the stack cache at time tN directly beneath the word read

from memory.

j: VAR {k: nat I k < occupancy(tO) and k > I}

REFA_UNUSED_correct: LEMMA

stack(tN)(j-l) = stack(t0)(j)

37

Note that if the range of j exceeds its proper bounds, the error is caught during the proof of

lemma REFA_INUSED_correct. However, if the range of j fails to completely cover the full range,

i.e., if it were specified as k > 2 the lemma REFA_UNUSED_correct would still be correct. In such

cases, the error would not be caught until the macro lift proofs mapping the micro correctness

lemmas into the other overall proof structure were completed. In fact, setting the range of j

incorrectly was one of the more likely errors when creating the micro correctness lemmas. On at

least two occasions, the macro correctness proofs revealed errors in setting the range of j that had

not been discovered during the micro correctness proofs. This illustrates that while completion of

the micro correctness proofs provides a high level of confidence in the microcode, completion of the

macro lift proofs serves to check on the sufficiency of the micro correctness lemmas.

The remaining micro correctness lemmas are stated as a conjunction of conditions that must

hold at completion of the instruction. For the REFA instruction, these consist of showing that

the program counter is incremented by one, that the TOS, PAGE, LENV, and MASK registers

are unchanged, that the processor remains in user mode, that memory is unchanged, and that the

interrupt register is not cleared during the course of the instruction.

KEFA_conjunction: LEMMA

(PC(tg) = PC(t0) + I)

(T0SREG(tN) = T0SREG(t0))

(PAGE(tN) = PAGE(tO))

(LENV(tN) = LENV(t0))

(MASK(tN) = MASK(t0))

(UM(tN) = UM(tO))

(MEMORY(tN) = MEMORY(tO))

CLRI accumulate(tO, TC)

These are specified as a single conjunction to increase proof efficiency. The proof of each micro

correctness lemma requires that the PVS prover perform a symbolic simulation of the microcode

using the microarchitecture model. By combining these into a single conjunction, PVS is able to uti-

lize its caching facility to perform the simulation once, dispatching multiple correctness statements

in parallel. This has a significant impact on proof speed.

The conjunctive style shown above was adopted mid-way through the AAMP-FV project. How-

ever, this change required that the form of the proofs that depend on this theory had to be changed

as well. Rather than simply auto-rewriting the entire micro correctness theory, the conjunction

had to be brought into the sequent, flattened, and each of the resulting propositions converted into

a rewrite rule. This is illustrative of how the development of efficient proofs can cause unforeseen,

and unintuitive, changes in the specifications.

6.2.1.2 The Micro Correctness Proofs

The actual proofs of the micro correctness lemmas rely heavily on the automatic rewrite capabilities

of PVS. They typically involve performing auto-rewrites of all of the primary registers, wires, and

signal definitions (DFFs, DFFRs, and CONNECTs) in the design, auto-rewriting any applicable

bitvector rules, and performing an assert. This basic strategy is sufficient to dispatch most of the

micro correctness proofs for the standard instructions.

Of course, each instruction is different and requires some some adjustment of the basic strategy.

It becomes obvious through experience which registers and wires need to be rewritten for different

38

classesof instructions.Forexample,instructionswhichdo not accessmemory(suchasthe ADD
instruction)do not needto havethe theoriesassociatedwith the main memoryinstalled. There
is a trade-off,however,betweenminimizingthenumberof automaticrewritesandmaximizingthe
reusabilityof theproof script.

Moredifficult to anticipateare the casesplits requiredin the proofsof differentinstruction.
Often,it is not obviouswhat specificvaluesa branchin the proof shouldbebaseduponuntil one
hasrevieweda failed proof, somanyof the variationson the basicproof script weredeveloped
throughtrial and error. It wouldbe difficult to developa singleproof strategythat wouldwork
wellonall of thestandardinstructions.

6.2.1.3 Proofs of Visibility Properties

In orderto ensurethepropersetupfor thenext instruction,thereareseveralproperties,in addition
to themicrocorrectnesslemmas,that mustholdat theendof thecurrentinstruction.Mostofthese
relateto showingthat the visibility assumptionfor the next instructioncanbemet, e.g.,ensuring
that stackoccupancyrequirementsaremet and that the microcodeis correctlyloaded. These
functionsarehandledby thestackadjustmentlogiccommonto all instructions.The theoryNEXT_
micro_correct is importedby themicrocorrectnesstheoryfor thecurrentinstruction.Dispatching
the type correctnessconditions(TCC) generatedby importing this theory guaranteesthat the
microcodefor the current instructionssatisfiesthe assumptionsneededby the stackadjustment
logic.In thisway,theverificationof themicrocodefor thecurrentinstructionandtheverificationof
thestackadjustmentlogiccanbecombinedto completethebottomlineof thecommutingdiagram
in Figure6.1correspondingto statesso to sv.

6.2.1.4 Proofs of Invariant Properties

Some properties of the AAMP-FV are best proven entirely at the microarchitecture level, without

trying to relate them to the macroarchitecture specification. For example, the AAMP-FV captures

interrupts raised while an instruction executes and holds them in the interrupt register pending the

end of the current instruction. Precisely defining this behavior is difficult in the macro architecture

since it has no real notion of time, just the state of the processor and memory before and after

the instruction. To ensure that interrupts are correctly handled, the micro correctness theory

imports another theory, INTA_EG_icro_correct, that states that the interrupt register correctly

accumulates and remembers new interrupts. At the macro architecture level, this is weakened to

state that under normal operation (i.e., ENDB and RST remain low) the interrupt register remains

unchanged if no interrupts are raised during the instruction. This invariant has been proven to

hold during the instruction specific microcode of each instruction. 1 The proof that it holds for

the stack adjust logic has not been completed.

6.2.2 The Complex AAMP-FV Instructions

Some of the AAMP-FV instructions, such as the CALL and IMPY instructions, are sufficiently

complex that the strategy described above was insufficient for the verification of their microcode.

To deal with these instructions, the specification of the micro correctness lemmas was split into

several theories and more complex strategies were used in their proof.

1With the exception of the CLRI instruction, which clears the interrupt register.

39

Thefirst strategyconsistedof dividingthe microcodeup into sectionsthat performsomewell
definedfunction, then "gluing" the verificationof thesesectionstogether,muchaswasdonein
the REFAinstructionwhencombiningthe verificationof the REFAspecificmicrocodeto that of
thestackadjustlogic. The secondstrategyconsistedof provingkeypropertiesat the lowestlevel,
thenusingthoseresultsto dischargemoregeneralproofobligationsat the next levelup. A third
strategy,usedin the CALL instruction,allowedthe proverto stepforwardthroughthe symbolic
executionof the microcodeonecycleat a time.

6.2.2.1 The CALL Instruction

The AAMP-FV CALL instruction transfers execution control to a called procedure and provides

for the passage of parameters, allocation of dynamic storage on the stack for the procedure's local

variables, and the creation of the stack mark. As such, it is one of the more complex AAMP-FV
instructions.

Its microcode is divided into three parts identified as the setup, adjust, and main segments.

The setup segment performs the initialization of several registers in preparation for execution of

the rest of the instruction. The adjust segment ensures that the stack cache is empty (for efficiency,

this is done by a special segment of microcode rather than by the normal stack adjust logic). The

main segment then performs the real work of the CALL instruction by writing the stack mark,

saving the current processor state, and performing a context switch.

Organizing the correctness theories for the CALL instruction around this structure makes it

possible to treat the microcode as three simple segments with minimal branching. This simplifies

the symbolic simulation of the microcode by reducing the number and complexity of the case splits

that need to be introduced during the proof.

It was also useful to separate the verification of each segment of microcode from the representa-

tion of the results used at the next higher level. At the lower levels, the proofs could be made more

efficient by stating the properties to proven in the conjunctive form discussed in Section 6.2.1.1,

thus exploiting the caching capabilities of PVS to symbolically execute the microcode once for all

properties rather than once for each property to be proven. At the next higher level, these same

properties were restated as individual lemmas suitable for use as automatic rewrite rules. These

lemmas were easily discharged using the conjunctive form proven at the next lower level.

These two strategies, breaking the microcode up into three segments and reformulating the

correctness properties to support the next higher layer, resulted in the proof structure shown in

Figure 6.2. The predicate theories are where the difficult part of the proofs, i.e., the symbolic

execution exploiting the caching capabilities of PVS, are located. The correct theories are cos-

metic restatements of the predicate theories expressing the properties as lemmas better suited for

rewriting.

For example, the CALL_setup_predicate, CALL_adjust_predicate, and CALL_main_predicate

theoriesare where most of the work in proving the CALL micro correctnesslemmas occur. Each

segment of microcode issymbolicallyexecuted once in thesethree theoriesand used to prove the

conjunctionofthe micro correctnesslemmas foreach segment. Their parent theories,CALL_setup_

correct, CALL_ad3ust_correct, and CALL_main_correct, break thesestatementsintoseverallem-

mas suitedforuse as automated rewriterules.The CALL_micro_predicate theorycombines these

three theoriestogetherto createthe "end-to-end"versionof the micro correctnesslemmas for

40

CALL_micro_correct

[
CALL_micro_predicate

I CALL_setup_correct

I CALL-setup-predicate I

CALL_adjust _correct

[CALL_adjust_predicate I

CALL_main_correct

I
CALL_main_predicate

Figure 6.2: CALL Proof Structure

the CALL instruction. Finally, the CALL_micro_correct theory restates these results in the form

expected by the macro lift proof of the CALL instruction.

Another technique used in the verification of the CALL microcode was to force the PVS prover

to evaluate the microarchitecture state by stepping forward one cycle at a time. This had two main

advantages. First, it improved proof efficiency by allowing the proof to delay case splits, thereby

making better use of PVS's caching facilities. Second, it made it easier for a human to monitor the

progress of the proof.

Normally, the PVS prover attempts to prove a microarchitecture property postulated at time T

by recursively rewriting it as a property postulated at time T - 1 until the start of the instruction

at time TO is reached. PVS then works its way forward in time, reducing expressions whenever

possible. This is a natural consequence of defining the microarchitecture state at time t + 1 as a
function of its state at time t.

While this technique worked well enough for the standard instructions, the microcode for the

CALL instruction is complex enough that the expressions generated while recursing to time TO

became difficult to manage. Worse, any errors in the specification amplified the problem, usually

without providing any clues of what the error was.

To address this, a method was developed to force the PVS prover to start with the micro-

processor state at time tO and step forward, computing the new microprocessor state at each micro

cycle until the desired time was reached. This strategy also provided a simple mechanism to let

the verification engineer examine the micro state at each time. This made it much simpler to spot

problems caused by errors in the specification.

To perform micro stepping, the step function was defined as shown in Figure 6.3. The step

function takes two arguments, a starting time t and a completion time TN and returns yet another

function, step (t, TN). This function takes two predicates over the micro state, A, defining a predi-

cate that is to hold throughout instruction, and P, defining a predicate that is to hold at the end

of the instruction, and returns a boolean value.

When using the step function in a proof, step is expanded at time t to expose its definition.

Providing t is less than TN, The PVS prover evaluates A at time t. Assuming A is some function

41

step: THEORY

BEGIN

IMPORTING micro_state

B : VAR bool

A,P : VAR [time -> bool]

t,t0,tR,TN : VAR time

S : VAR micro_state

split(S,B) : bool = B

step(t,TN) (A,P) : KECURSIVE bool =

IF (t >= TN)

THEN P(TN)

ELSE A(t) _ split(uState(t),step(t+l,TN)(A,P))

ENDIF

MEASURE TN - t

step_accumulate: LEMMA (tO <= tR) _ (tR < TN) _ step(t0,TN)(A,P) => A(tR)

step_step : LEMMA (t<TN) => step(t,TN)(A,P) = step(t+l,TN)(A,P)

step induct : LEMMA step(TN - t,TN)(A,P) => P(TN)

step_rewrite: LEMMA step(t0,TN)(A,P) => P(TN)

END step

Figure 6.3: Step Function

of the micro state at time t, this forces the PVS prover to evaluate the micro state at time t,

and in the process, place the micro state at time t in its cache. If A(t) holds, the prover step

proceeds to evaluate split. The split function is actually dummy function. Its sole purpose is

to allow the proof engineer to examine a representation of the micro state at time t, uState(t).

If the micro state appears reasonable, the proof continues by expanding step at time t + 1. This

process continues until t is equal to or greater than TN, at which time the correctness state P is

evaluated at time TN. The step_accumulate and step_rewrite lemmas are useful in establishing
the desired final results.

As mentioned earlier, this approach has two advantages. First, the verification engineer can

monitor the progress of the proof by examining uState at each step. The function uState can

be defined to be whatever representation of the microarchitecture state is the most helpful. This

makes it much simpler to detect when a proof has gone astray due to a specification error. Second,

the PVS prover caches the intermediate results as the proof steps forward. By delaying case splits

in the proof as long as possible, PVS can use the cached results when evaluating new instances of
the micro state.

42

6.3 Proof of the Stack Adjustment Logic

From time tN to tv, a common piece of microcode, the stack adjustment routine is executing. This

routine ensures that the requisite number of arguments are read into the stack cache in preparation

for the next instruction or that sufficient words are written out to memory to make room for the

computed result. Since this microcode is common to all instructions, its correctness only needed

to be proven once. Combining the proof of the micro correctness conditions with the proof of the

stack adjustment routine completes the lower arm of the commuting diagram from microstate so

to sv in Figure 2.1. The stack adjustment logic was verified by SRI.

6.4 The Macro Lift Proofs

Once the detailed behavior of the microcode is verified at the microarchitecture level, the overall

proof of correctness is completed by the macro lift proof that "lifts" the micro correctness conditions

to the macroarchitecture level. In Figure 6.1 this corresponds to the arms mapping microstates

so and SN into macrostates So and Sv via the Abstraction function and the next_macro_state

function that transforms macrostate So into macrostate Sv.

6.4.1 The Abstraction Function

The abstraction function of Figure 6.1 is defined in theory ABS shown in Figure 6.4. This function

constructs the macroarchitecture state seen by the application programmer from the microarchi-

tecture state. For the most part, this simply consists of equating, or "lifting", components directly

from the microarchitecture state to the macroarchitecture level. For example, ABSpc simply returns

the value of the microarchitecture program counter register at time t.

One exception is the top of stack, or TOS, register seen by the application programmer. The

microarchitecture T0S register actually points to the topmost (i.e., smallest address) word of the

process stack maintained in memory, while the application programmer sees the "logical" TOS

created by including the number of words maintained in the stack cache to this address. As a result,

the logical TOS, ABStos, is defined to the microarchitecture T0S minus the current occupancy of

the stack cache (recall that the process stack grows towards decreasing memory addresses).

A more complex exception is the application programmer's view of memory, which is a blending

of actual memory and the stack cache. The application programmer's view, ABSmem, returns the

original memory function defined in Figure 4.4, except that it substitutes the contents of the stack

cache for words in memory locations overlaid by the stack cache. To obtain the correct index into

the stack cache, ABSmem converts an address addr into an offset from the top of the stack cache

and subtracts that offset from the occupancy of the stack cache.

Finally, the function ABS uses the individually defined components of the abstraction function

to create the PVS record representing the macrostate.

6.4.2 The Macro Correctness Statement

For each instruction, a lemma is created in PVS defining what it means for that instruction to be

"correct". The statement of correctness for the REFA instruction is given in lemma REFA_macro_

correct in Figure 6.5. Here, tO is the time at which the instruction begins and TN the time at

43

ABS: THEORY

BEGIN

IMPORTING AAMP_FV_microarchitecture

IMPORTING macro_state

t: VAR time

Lift the internal registers and flags to the macro level•

...

ABSpagereg(t) : register = PAGE(t)

ABStos(t) : register = T0SREG(t) - occupancy(t)

ABSpc(t) : address = PC(t)

ABSlenv(t) : register = LENV(t)

ABSum(t) : bool = UM(t)

ABSmask(t) : byte = MASK(t)

ABSintreg(t) : byte = INT_KEG(t)

% Lift external memory and the stack cache to the macro level•

...

ABSmem(t)(cd, ue: bool)(addr: address): word =

IF in_stack_cache_area(t,cd,ue,addr) THEN

stack(t)(occupancy(t) - offset(t,addr))

ELSE

MEMORY(t)(cd,ue)(addr)

ENDIF

ABS returns the macrostate as a function of the microstate

at time t, "lifting" the visible microstate to the macro level•

...

END ABS

ABS(t): macro_state = (# mem := ABSmem(t),

tos := ABStos(t),

pc := ABSpc(t),

lenv := ABSlenv(t),

urn := ABSum(t),

mask := ABSmask(t),

intreg := ABSintreg(t) #)

Figure 6.4: Abstraction Function

which the instruction ends. ABS(tO) and ABS(TN) correspond to the macrostates at the start and

completion of the REFA instruction, respectively. This lemma states that if the opcode at time tO

is REFA and the macro restrictions apply, then the macrostate created by applying the abstraction

function ABS to the microstate at time TN is the same as that obtained by applying the next_macro_

state function to the macrostate created by applying the abstraction function to the micro state

44

REFA_macro_restrictions : AXIOM

current_opcode(ABS(t0)) = REFA =>

macro_restrictions_apply(ABS(t0)) =

(not_stack_cache_address(ABS(t0))(WA)

pc_not_in_cache_region(t0))

WHERE WA = (top(ABS(t0),l) o top(ABS(t0),0))^(23,0)

REFA_macro_correct : LEMMA

current_opcode(ABS(tO)) = REFA

macro restrictions apply(ABS(tO)) =>

next macro state(ABS(tO)) = ABS(TN)

Figure 6.5: PVS Correctness Statement for the REFA Instruction

at time tO. The next_macro_state function was discussed in Section 4.2.4 and is given for the

REFA instruction in Figure 4.6 on page 23.

The macro_restrictions_apply predicate defines the conditions that must be met for the

instruction to be well defined under the abstraction we have defined. For most instructions, this

simply consists of the restriction pc_not_in_cache_region, which is true except when the data

and code regions overlap in memory. If the data and code regions overlap, then the restriction

also requires that the memory location addressed by the program counter not lie within the stack

cache region. Instructions that directly reference memory, such as the REF and ASN instructions,

need additional restrictions. For example, they require that the memory word(s) being referenced

cannot lie in the vicinity of the stack cache. The REFAnnacro_restrictions axiom assigns the

macro_restrictions_apply predicate this interpretation when the current instruction is REFA.

For instructions such as REF24, that calculate the address from bytes drawn form the instruction

stream, it is further necessary to require that the instruction bytes do not overlap with the scache

region if the code and data regions overlap in memory.

The REFAnnacro_restrictions axiom repeats the constraints included in the definition of the

REFA instruction given in Figure 4.6. When the macroarchitecture was specified, it wasn't apparent

that a separate specification of macro_restrictions_apply would be needed during the proofs.

In future efforts, it would make more sense to specify macro_restrictions_apply once for each

instruction and incorporate this definition into the macro architecture specification.

6.4.3 The Macro Lift Proofs

The actual macro lift proofs all follow the same overall pattern, yet differ enough that each requires

individual attention. The proof for the REFA instruction is typical. It consists of 66 PVS prover
commands.

The first part of the proof consists of 36 prover commands. These instruct PVS to generate

automatic rewrite rules from several PVS theories such as the bit vectors, pull in the macroarchi-

tecture definition of the REFA instruction, pull in the microarchitecture correctness lemmas for

the REFA instruction, pull in the abstraction function, and then expand the correctness statement

shown in Figure 6.5 using all of the above as rewrite rules. At this point, PVS is able to conclude

45

throughauto-rewritesthat the correctnessstatementholdsfor all componentsof the macrostate
exceptfor memory.

As discussedin Section4.4, memoryconsistsof up to four memoryspacesindexedby the
code/dataanduser/execlines. The proof first splitsonwhetherthe memoryspaceis for codeor
data. Sincethe REFA instructiondoesnot changecodememory,PVS is ableto showthat the
correctnessconditionholdsfor thisbranchwith asingleASSERTprovercommand.Next,theproof
splitson whetherthe remainingdatamemoryspacebeingconsideredcontainsthe processstack
or not. Sincethe data memoryspacethat doesnot containthe processstackis not changedby
theREFA instruction,PVSis ableto showthat thecorrectnessconditionholdsviaapplicationof
severalASSERTandGROUNDcommands.

The proof that the correctnessconditionholdsfor the memoryspacecontainingthe process
stackis the mostcomplexportionof theproofandconsistsof 22provercommands.Thesesplit the
proofinto threebranches,first consideringthe portion of the memoryspacelying above(i.e.,at a
loweraddresses)than the newlogicaltop (TOS)of the processstack,the specificwordpointedto
by the newTOSvalue(whichcontainsthe wordreadfrom memoryandplacedon the top of the
stack),andthe unchangedportion of memorylying below(i.e., at higheraddresses)than the new
logicaltop of stack.

Executionof theREFAmacrocorrectnessproofrequiresapproximately618seconds(run time)
ona SPARC20workstation.

46

Chapter 7

Lessons Learned

Many insights have been gained during the AAMP5 and AAMP-FV projects. This chapter discusses

some of the more important lessons.

7.1 Technology Transfer

Learning how to specify and verify formally the AAMP5 and AAMP-FV has been a long and

challenging process. The paradigm followed on both projects has been for SRI to develop the

initial approach on a few examples, then have Collins apply it to several examples, refining and

generalizing the approach. Throughout the project, things that appeared overwhelming at the start

were eventually mastered and reduced to routine, repeatable steps. These gains were achieved by

1) direct reuse of earlier specifications, 2) creating examples of how best to specify in PVS features

of the AAMP family, and 3) consolidating in the same individuals an understanding of both the

AAMP family and the expertise of how to use PVS.

An example of the direct reuse of earlier specifications is the bit vectors library developed

during the AAMP5 project. This library was used without significant modification on the AAMP-

FV project and greatly reduced the time needed to create the specifications of the micro and macro

architectures. While doing the proofs it became clear that the library needed to be supplemented

with a large number of lemmas that could be invoked as rewrite rules (Section 7.3). This points

out that even established libraries will need to be continuously enhanced.

A good example of learning of how best to specify in PVS features of the AAMP family is

provided by the specification of the AAMP-FV instruction set. In specifying the AAMP5 instruction

set, a constructive style of specification, in which each instruction was specified by stating a function

that directly transformed the macro state, was originally chosen. Later, it was recognized that a

more descriptive style, in which the effect of each instruction was described by giving the macro

state before and after the instruction, more in the form of pre and post conditions, was more useful,

easier to write, and simpler to review [27, 37, 36]. Changing to the more descriptive style played a

major role in reducing the cost of specifying the AAMP-FV instruction set. As a result, specifying

each instruction at the macroarchitecture level is now quite routine, usually requiring less than an
hour.

The most dramatic gains in efficiency were achieved by consolidating in the same individuals

an understanding of both the AAMP family and PVS. For example, creating the AAMP5 mi-

47

croarchitecturespecificationtook over1,000manhoursto complete,whilecreatingthe AAMP-FV
microarchitecturespecificationtook lessthan 120hours. This occurredbecausemanyof the de-
tails of how to specifythe architecturewerewell understoodfrom the AAMP5 project and the
AAMP-FV microarchitectureexpertwasableto write similarspecificationsfor the AAMP-FV.

Much lessexperiencewith doingproofsof correctnesshad beentransferredto Collinsduring
the AAMP5 project. As a result, a significantportion of the AAMP-FV project was involved
with masteringthis technologyand refiningit so that it couldbe repeatedconsistently.While
therearestill improvementsthat canbemade,for manyinstructions,this processhasalsobecome
routine. Fifty-four of the AAMP-FV's 80 instructionshavebeenformally verified,at anaverage
costof about38hoursper instruction. Theseproofsaresimilar in that they basedona symbolic
executionof the the microcode.On futureefforts,webelievethis costcouldbecut in half because
theproofmethodis nowbetter understood.

Many of the remaining26 AAMP-FV instructionsconsistof instructionssuchas multiply,
divide,shift, call, and return that are implementedwith considerablymorecomplexmicrocode.
Simplesymbolicexecutionof themicrocodefailsherebecausetheexpressionsgeneratedduringthe
proofbecometoo large.As a result,moreefficientapproacheshadto bedeveloped.For example,
proofof the multiply and divide instructionsarebasedon identificationof a loopinvariant that
holdsaseachmicroinstructionis executedandthat canbeusedin a proofby induction. At this
time, examplesof how to performtheseproofshavebeendevelopedby SRI,but thesemethods
havenot yet beenwidelyappliedandrefinedby Collins.

In summary,the role of SRI hasbeento developthe first, depth-firstexamples,whileCollins
performsthe breadth-firstapplicationand generalizationof thoseexamples.This experienceis
transferredasreusablelibraries,examplestailoredto the AAMP family,andconsolidationof both
AAMP domainknowledgeand PVSexpertisein the sameindividuals.Costsduringdevelopment
of thesemethodsarequite high, but drop significantly,evenby an order of magnitude,as the
technologyis mastered.At thecurrent time,specificationof the macroandmicro architecturesis
almostcompletelyperformedby Collins,proofof the moreroutineinstructionsis wellunderstood,
andtechniquesto provethe morecomplexinstructionsarebeingtransferredto Collins.

7.2 Development of Domain Specific Libraries

Although one of the contributions of the AAMP5 project was the development of an extensive

library specifying the properties of bit vectors (i.e., sequences of bits such as bytes and words),

manipulation of bit vectors proved to be a constant challenge while doing the AAMP-FV proofs.

In retrospect, this shouldn't have been surprising. Most of the AAMP5 project, particularly for

Collins, focused on specification of the micro and macroarchitectures. Consequently, while the

the bit vector library developed on the AAMP5 project worked admirably for specification of the

AAMP-FV, more work had to be done to use it for verification of the AAMP-FV microcode. Most

of this consisted of the development of lemmas about the bit vectors that can that can be used as

automatic rewrite rules. Also, SRI has incorporated many of the key properties of bit vectors in

decision procedures in PVS.

While considerable progress has been made in extending the bit vector library, more work still

needs to be done. It is not yet clear that the best model for the bit vectors has been chosen, that

the best set of operations for constructing and destructing bit vectors have been defined, and that

the best set of rewrite rules have been developed. Precisely how decision procedures for bit vectors

48

shouldbe incorporatedinto PVS and howthey shouldbesupplementedwith rewrite rules also
needsmoreattention.

7.3 Proof Robustness

One of the main problems encountered during the AAMP-FV project was that proofs completed

during the earlier part of the project would break as the specifications were changed to complete

proofs encountered later in the project. Usually, this occurred as proofs uncovered defects in the

specification, additional proof obligations are identified, or required changes in the specification

to facilitate the proof. For example, midway through the AAMP-FV project, we realized that

the memory model, which was parameterized with whether the code/data and user/exec lines

were used to partition memory, could be generalized to the unparameterized version discussed in

Section 4.1.1. This allowed us to verify the AAMP-FV microcode regardless of how memory was

configured, reducing the number of proofs by a factor of four. However, it also required considerable

effort to go back and generalize the proofs already completed using the old memory model.

In other cases, proofs would be encountered that could be simplified by making small changes

to the specification, but these changes would break existing proofs. Less frequently, actual errors in

the PVS specifications would be found in later proofs. On a few occasions, upgrades to PVS broke

existing proofs. All of this points to the need to automate the proof process as much as possible

on large projects. This is particularly true of industrial projects, where constant change is the rule

rather than the exception. Two approaches suggest themselves, designing proofs to be as robust as

possible and increasing the amount of automation PVS can bring to bear on a problem.

Designing proofs to be a robust is a topic in itself worthy of further work. However, a few

guidelines have surfaced during the AAMP-FV project. Automation is usually desirable because it

makes a proof less sensitive to minor changes in the specifications. For example, one of the most

useful techniques used on the AAMP5 and and AAMP-FV projects was to develop rewrite rules

that exploit PVS's rewriting capabilities to automate as much of the proof as possible.

There are also a variety of heuristics that can be used to make proofs less fragile. Generally,

the less application specific information provided in a proof, the less fragile it will be. For example,

a ground command is generally more robust than performing a case split (which requires identi-

fication of the specific predicate to split on) followed by assert commands. However, the latter is

often more efficient and may even be necessary to complete a long proof.

Using care in how application specific information is used can also make a proof more robust. For

example, when phrasing a case split, the most obvious choice, based on just looking at the sequent,

may be more fragile than another form more closely tied to the actual problem. For example, in

the macro lift proofs, case splits could often be stated in terms of either the microarchitecture or

the macroarchitecture, but stating them from the macroarchitecture view made them less sensitive

to changes to the microarchitecture specification. This was particularly true if automated rewrite

rules immediately rewrote the case split predicates in terms of the microarchitecture. Since the

macroarchitecture specification was less likely to change than the microarchitecture specification,

this resulted in more robust proofs.

Another guideline is to avoid the use of specific formula numbers in a proof (e.g., assert -3),

as these identifiers often change. Forms such as assert - or assert * are more robust.

The use of parameterized theories often made the proofs more difficult than necessary, largely

because of the need to instantiate the parameters with specific values during the proof process. On

49

severaloccasions,wereplacedparameterizedtheorieswith unparameterizedversionsafter dealing
with the consequenceswhiledoingproofs.

The otherapproachto increasingthe robustnessof proofswouldbe to enhancePVS to bring
moreautomationto bearon a problem. The groundcommandmentionedearlieris an example
of a powerfulPVS commandthat improvesthe robustnessof a proof,thoughoftenat the costof
additionalCPUtime.

A facility to tag antecedent,consequent,and hiddenformulaewouldalsobehelpful,allowing
oneto writeprovercommandsof theform assert tag, where ta 9 is a name earlier associated with

the formula of interest. In particular, it would be helpful to tag formulas with names at the time

there are hidden so that they can later be revealed using that tag. One of the most fragile parts of

the macro lift proofs was a lemma that was introduced early in the proof, then hidden so that it

would not be affected by automatic rewrite rules, then revealed later in the proof. Since revealing

it required that its position among the hidden rules be given explicitly, the reveal statement was

a frequent source of trouble.

One thing that will help greatly is the introduction of more speed. Some of the micro correctness

proofs for the AAMP-FV take more than a day to complete on a Spare 20 workstation, and

correcting such proofs due to minor changes to the specifications is a frustrating task. An order of

magnitude improvement in performance would go a long ways towards mitigating this. This is not

as outrageous as it might sound: many of the proofs completed on the AAMP-FV probably could

not have been done on the technology available at the start of the AAMP5 project. While more

speed will not actually make proofs more robust, it will mitigate the consequences of fragility.

7.4 Exploiting Modularity

PVS supports modularity through constructs such as theories, parameterization of theories, im-

porting (making a theory visible), and exporting (hiding parts of a theory). In addition, PVS also

provides facilities for files, which hold one or more theories, and libraries, which are similar to file

directories. Breaking the AAMP5 and AAMP-FV specifications down into many small, logically

related theories was a great help in organizing and structuring these large specifications. If only to

minimize the amount of typechecking that must be redone when modifying a specification, careful

structuring of a specification is worth the effort invested.

Considerable work has been done by the software community to develop heuristics that maximize

cohesion, or the degree to which the constructs in a module are related, and to minimize coupling,

the degree to which modules depend on each other. Besides producing well organized specifications,

this places together portions of the specification that are likely to change together and minimizes

the extent to which changes affect other modules.

The AAMP5 and AAMP-FV projects were both unusual in that they had stable informal

specifications from which the formal specifications were developed. Even so, change caused by errors

found in the specification and to facilitate the proofs became one of the largest costs associated

with the project (Section 7.3). In most industrial applications, constant change is the norm rather

than the exception. This suggests that better techniques for managing and mitigating the effect

of change need to be incorporated into tools such as PVS if they are to used in parallel with the

development of industrial systems. As with engineering proofs for robustness, this can be achieved

both by structuring theories to be robust in the face of change and by enhancing PVS.

5O

A specificationcanbe mademorerobustby using interfaces as firewalls. All the definitions

that other theories can reference are placed on the interface, while supporting definitions are encap-

sulated or hidden behind the interface. By encapsulating definitions that are likely to change, the

effect of change can be mitigated. Interfaces can be established around a single theory or a group

of theories. In a system such as PVS, where one wants to reason formally about a specification, it

is necessary to place key properties on the interface as well as type definitions. For example, one

might want to place on the interface certain lemmas that can be invoked during the proof process,

but hide behind the interface a constructive specification that exhibits these properties.

This sort of interface was placed around the bit vectors library during development of the

AAMP5 and AAMP-FV project. As lemmas were developed that could be used as rewrite rules

for the bit vectors, they were added to a "shell" of theories sitting directly above the bit vectors.

Eventually, they became complete enough that the original constructive specifications were no

longer needed for either the specifications or the proofs. However, the constructive specification

was still used to prove the lemmas, thereby establishing their consistency. Later, a fundamental

change to the constructive specification was proposed. Researchers at NASA Langley were able to

implement this change in a few days and incorporating it into the AAMP-FV specification merely

required proving that the lemmas on the interface still held.

This interface was enforced on the AAMP-FV project by convention. The actual mechanism for

enforcing such interfaces in PVS is the EXPORTING clause, which exports from a theory names that
are to be made available to the rest of the context. The EXPORTING clause was not used on either

the AAMP5 or AAMP-FV project, in part because the PVS Reference Manual discourages its use.

However, our experiences suggest that more care needs to be given to mitigating the effect of change

in large verification efforts. Further research may suggest the addition of other mechanisms than

just the EXPORTING clause.

There are also enhancements to PVS that would help to manage change. Currently, a change

to any theory requires all theories that import that theory be retypechecked and their proofs rerun,

whether they are affected by the change or not. A typechecker that only rechecked those portions of

the specification affected by a change could greatly reduce the amount of time spent retypechecking

and rerunning proofs. If would also be helpful to be able to determine the scope of the theories

affected by a change before actually making the change.

It is likely that additional constructs to help minimize the impact of change will need to be

added to PVS. For example, the library feature was recently added to PVS that can be used to

group theories into libraries that are reasonably stable, but additional documentation is needed on
how to use this feature.

A number of heuristics for determining the quality of software interfaces have been developed

over the years. Embley and Woodfield have published a method for quantifiably assessing the

quality of the cohesion exhibited by an Ada package [15]. Similar concepts could be developed for

specifications written in PVS. Given such heuristics, it is not difficult to envision the addition of

automated design critics to PVS that could automatically flag poor structuring choices.

7.5 Support for Product Families

Formal specification and verification is an expensive process, making it important to amortize its

cost over several projects. One way to do this is to develop reusable libraries such as the bit

vectors. Another is to scavenge portions of one specification that can be copied, modified, and used

51

in anotherapplication.Portionsof theAAMP-FV specificationwereprofitablyscavengedfrom the
AAMP5project.

However,if it isknownfromtheoutsetthat afamilyof relatedproductsisgoingto bedeveloped
it makessenseto plan for the reuseof specificationsand proofsin a moresystematicmanner,
commonlyreferredto as domain, or product family, engineering. In this approach, a core set of

common features are developed for use by all members of the product family. Members of the

product family are then instantiated by supplementing this core specification with details specific

to that member. As members are created, those features common to several variants are generalized

and folded back into the main, or domain definition.

Domain engineering is closely related to modularization of specifications (Section 7.4) since one

is concerned with identification of commonalities and differences between members of the product

family. Portions of the specification known to be stable and common are incorporated into the

core of the domain definition, while those likely to change are placed in variant definitions. In this

respect, PVS already contains many of the specification constructs necessary to support a product

family. However, it is not clear that all the features needed to support reuse of proofs exist. For

example, in the AAMP-FV project all the macro lift proofs were variations of the same basic proof

structure. Yet is was impractical to specify this structure once and instantiate it with the details
needed for each distinct instruction.

Creating a domain definition is obviously more difficult than specifying a single member of

the family and would not have been appropriate for exploratory projects such as the AAMP5 or

the AAMP-FV. However, as the technology matures from exploratory to commercial application,

techniques for the systematic, planned reuse of specifications and proofs will become essential.

7.6 Importance of the User Interface

Another lesson that was not fully appreciated prior to the AAMP-FV project was the importance

of the user interface. During the AAMP5 project, SRI added to PVS the ability to graphically

display the import chain for a family of theories and the tree structure of a proof. Displaying the

import chain for the AAMP-FV specifications immediately pointed out unnecessary and undesirable

imports that had gone completely unnoticed. In the same way that being handed a map changes

one's perception of the forest, it brought out patterns that had not been seen when looking at the

specifications a theory at a time.

The importance of being able to visualize the tree structure of a proof was dramatically demon-

strated while completing the macro lift proofs. Once this facility was provided, it quickly became

the norm to display the proof tree adjacent to the PVS prover window. Midway through the

project, several very long proofs (taking over a day to execute) were being developed when a bug

was uncovered in the software displaying the proof tree. After a week of effort, it became apparent

that the proof was too difficult to understand without the graphic display of the proof tree. The bug

was reported to SRI and several similar proofs that did not invoke the bug were completed. Later,

when the correction from SRI was installed, the proof of the offending instruction was completed

in a few hours. In short, the ability to visualize the overall structure of the proof and one's position

in it played an essential role in managing the proof.

As larger proofs and specification are undertaken, the need for interfaces that assist the user in

understanding their structure and navigating within them will continue to grow. Even now, tools

that made it easier to visualize the overall AAMP-FV specification, navigate through it, zoom in on

52

portionsof interest,andbetteranticipatetheeffectofchangeswouldbeveryhelpful.Undoubtedly,
therearevaluableimprovementsto the userinterfacethat haven'tevenbeenenvisioned.

7.7 What Needs to be Proven?

Most formal verification projects have been performed in the context of research or exploratory

efforts. Exploiting this technology for commercial use will force it to move closer to an engineering

discipline. However, an important aspect of an engineering discipline is that solutions must be

cost-effective [32]. This tension between research and engineering manifested itself during the

AAMP-FV project in the form of a simple question: What needs to be proven?

For microprocessor verification, one end of the spectrum requires a complete proof that the

transistors correctly implement each instruction. While an exciting prospect, this approach was

not chosen for the AAMP-FV simply because sufficient funding didn't exist. Previous experience

building members of the AAMP family had shown that the microcode is the most likely source

of error. For this reason, both the AAMP5 and the AAMP-FV projects focused on microcode
verification.

Besides providing a very high level of assurance in the correctness of the microcode, this had

many indirect benefits. Since verification of the microcode is based of symbolic execution of it

on a specification of the microarchitecture, it was necessary to specify the microarchitecture for-

mally. This process, along with proof of the microcode, provided a very detailed review of the

microarchitecture that that was likely, if not guaranteed, to find errors in its design.

As the project evolved, it became clear that the hardware engineers gained the greatest assurance

from completion of the micro correctness proofs, and were not very concerned with the macro lift

proofs. Yet on several occasions, completion of the macro lift proofs pointed out pieces of the

microcode that had not been verified. For example, a subtyping error twice caused the micro

correctness proof to overlook the correctness of a word in the process stack. Nothing was actually

wrong with the microcode, the proof just wasn't completed.

At the same time, completing the macro-lift proofs provided an important validation of the

instruction set, or macro architecture, specification. More importantly, completion of the proofs

forced us to model several subtleties that had been omitted from the original specification. To

create this specification, both the micro correctness and macro lift proofs were essential.

But what if time or money doesn't exist to complete every proof? Is there value in only

completing some of them? One of the authors is now using PVS routinely to execute microcode

symbolically on his current project. This gives him much greater confidence in the correctness of

the microcode, without incurring the cost of full formal verification early in the project. While

these partial proofs may be extended to full proofs of correctness before the project ends, that

decision will be based on an economic judgement of the costs versus the benefits.

Some lemmas seem obviously true but can still be difficult to prove. Can such proofs be

skipped? The risk involved may depend on why the lemma was created in the first place. It was

not uncommon when verifying a particular instruction to reduce the entire proof to the equivalence

of two moderately complex bit vector expressions. Often, this could be stated as a lemma and

proven independently. While some of these appeared obviously true, if there had been an error in

the microcode, it would have been distilled down and buried in that very lemma. This situation

actually arose on the AAMP-FV project when verifying the ABSD instruction, emphasizing that

53

the questionof what needsto provenis not merelyone of aesthetics,but a practical concern
deservingcarefulthoughtascostsarebalancedagainstbenefits.

What if the microcodeis verifiedthroughproofsonce,but later a changemadeto the specifi-
cationto facilitateanotherproofbreaksthe proof? Doesthe verificationof the microcodebreak
with the proof?

Moresubtleis thequestionof howmuchabstractionshouldbeintroducedinto thespecification.
In the AAMP5 and AAMP-FV projects,westartedwith a register-transfer,or microarchitecture,
abstractionof theprocessor.Evenhere,choiceshadto bemaderegardinghowmuchdetailshould
beincludedin the model.Includingmoredetailmakesit simplerto validatethemodelagainstthe
actualdesignbut canhavea profoundimpacton thecomplexityof the proofs.For example, in the

AAMPS, abstract, property-oriented specifications of the bus interface unit (BIU) and look-ahead

fetch unit (LFU) were created. While this saved considerable proof effort, the engineers were never

as comfortable with these specifications as with the models that more closely followed the detailed

design.

There are many choices to be made, and a complete set of proofs are not in themselves sufficient;

one can have completely correct and consistent models that bear no relationship to reality. Ulti-

mately, one has to honestly balance benefit against cost, organizing the effort so as to concentrate

on the areas of highest risk. Even if every proof is not completed, it is usually possible to achieve

a level of assurance in excess of what is accepted practice today.

On the AAMP-FV, we have chosen to create a model of the processor in PVS at the register-

transfer level, to create a model of the processor at the instruction set level, and show that the

register-transfer level model and the microcode correctly implement the instruction set specification.

The most important proofs have been completed, although a few supporting lemmas have only been

inspected and still need to be completed.

7.8 Support for Team Efforts

While the AAMP-FV team was small (three or four employees at Collins, one at SRI), it was large

enough to encounter problems typically associated with team efforts. These included maintaining

consistent configurations between all individuals, dividing work up among team members, and in-

corporating changes from one individual without adversely affecting other members of the team. All

of these were compounded by having two development sites and by the fact that a PVS specification

is a complex system consisting of a theories and proofs related through several dependencies.

The worst problems were simply those of maintaining a consistent configuration between team

members. This was mitigated among the Collins team members by employing a commercial con-

figuration management system to maintain independent views of the AAMP-FV specifications and

proofs, integrate changes from one team member into the views of other team members, and save

baselines. While the configuration management system was awkward to use and and seemed ex-

cessive for a project of moderate size, configuration control problems within the Collins site were
minimal.

Unfortunately, this system was not available at SRI, and configuration control had to be per-

formed manually. Normally, this consisted of sending individual theories and proof files between

Collins and SRI. Inevitably, the Collins and SRI versions would drift apart as individuals forgot

to send updated theories or proofs or neglected to install newly received changes to avoid conflicts

with ongoing proofs. PVS provides a facility to generate a "dump" file that can be used to recreate

54

a PVScontext,andsuchdumpswereexchangedperiodically.Unfortunately,no facilitiesexist for
identifyingthe differencesbetweena dump and an existingPVS context,or for extractingthese
differencesandapplyingthemto anexistingcontext.As a result,teammemberswerereluctantto
switchto another'sdumpfile for fear it wouldoverlaytheir mostrecentchanges.

Everyfewmonths,thefailureto completea complexproofwouldbe traced,after manyhours
of work,to adiscrepancybetweentheSRIandCollinsconfiguration.Manymorehourswouldthen
bedevotedto "synchronizing"the specifications,whichwouldimmediatelystart to divergeagain.

Theseproblemscan be addressedin a varietyof ways,rangingfrom strict useof a manual
protocol to implementationof a full, distributed,configurationmanagementsystem. The most
reasonablechoicewouldbeto usePVSwith anexistingconfigurationmanagementsystemaswas
doneon the AAMP-FV project. While this hasworkedwellwithin Collins,a fewminor problems
havebeenobserved.Forexample,whenafile is checkedout or checkedin, PVSviewsit hasbeing
modified,andhasto retypecheckall theoriesdependentonit. Caremustbetakento checkoutand
restoreboth the PVS theory (.pvs)andproof (.prf) files.Also,context (.bin) filesposea problem
sincetheymaybeaffectedby a changeto their contexteventhoughtheassociatedtheoryor proof
filehasnot beenchanged.

Distributedsitespresenta morecomplexproblem.Theidealsolutionwouldbe to usea config-
urationmanagementsystemthat supportsdistributedsites,but theseareusuallyexpensive.Since
distributedteameffortsusingPVSarestill rare,somesimplefacilities to check-inand check-out
theoriesfromacentralsiteandto identifydifferencesbetweentwositeswouldprobablybesufficient
if combinedwith a manualprotocol.

7.9 Use of Human Resources

It became clear on the AAMP-FV project that large formal verification efforts should be staffed

with several levels of expertise. Some activities must be assigned to the most experienced individual,

while others can be safely delegated to less experienced employees. Besides making good economic

sense, this ensures that all team members remain challenged and helps ensure an increasing pool
of skills.

Ideally, the most experienced individuals would be given the task of creating the PVS spec-

ifications, since there are numerous decisions that will affect the overall success of the project.

Choices must be made as to what is to be modeled (i.e., what is the ultimate goal of the project),

where abstraction can be used as opposed to simply copying the system design, and which styles

of specification can be validated through informal reviews and which will best support the proofs.

Some tasks, such as fleshing out specification details and conducting reviews, can be delegated to

less experienced individuals, but the overall structure of the formal models must be directed by

individuals with a good understanding of the problem domain and experience with both formal

specification and verification.

Its also important to have experienced individuals involved with setting up the framework for

the proofs and generating the first example proofs. While any completed proof is in some sense

adequate, care needs to be taken to ensure that proofs are robust since changes to the specifications

will occur even on a stable project. Also, an experienced individual can often come up with a far

shorter and more elegant proof than a novice, and proofs should be efficient to minimize the cost

of running them and their derivatives.

55

Oncethis frameworkis in place,actuallycompletingthe proofscanbedelegatedto the most
inexperiencedindividualson the team. Oneof the advantagesof formal verificationis that each
proofprovidesa simplethumbsupor thumbsdown,regardlessof thequalityof theproof. Evenso,
it wouldseemprudentto providesomesortof oversightto ensurethat theproofsaren'tdrifting too
far fromthe originalrobustandefficientexamplesdevisedbythe moreexperiencedteammembers.

Our experiencesalsosuggestthat at leastoneindividualshouldbechargedwith responsibility
for ensuringthat differentversionsof the specificationsremainsynchronizedand overseeingthe
integrationof eachteammember'swork into the overallspecificationand proofs. As with any
project,it isalsorecommendedthat therebeaprojectmanager,projectplan,andprojectschedule
andthat theproject betrackedandmanagedagainstthat plan.

56

Chapter 8

Conclusions and Future Directions

The central result of this project was to demonstrate that formal verification of microcode can be

performed at reasonable cost for most of the AAMP-FV instruction set. We have formally specified

in PVS the entire AAMP-FV microarchitecture, 54 of the AAMP-FV's 80 instructions, translated

into PVS the microcode for these instructions. The microcode in these 54 instructions was proven

correct except for the proofs of some supporting lemmasJNo errors were found in the microcode

verified, although some mistakes were discovered in our specifications. The cost to verify these

instructions was about 38 hours per instruction, almost an order of magnitude reduction over the
AAMP5 costs.

Moreover, we are confident that the cost can be reduced further. Even on the AAMP-FV project,

substantial effort went into refining and generalizing proof strategies. Much of this expertise can be

reused on future efforts. Our current belief is that we could cut the cost per instruction to about

one half our current costs, i.e., approximately 20 hours per instruction.

However, more work needs to be done on the verification of complex instructions such as multi-

plication, division, and procedure call and return. While techniques for verifying these instructions

were developed on the AAMP-FV project, they have not been applied to all the remaining instruc-

tions. Verification of these instructions should eventually become routine, but they will probably

always be more costly to prove correct than the simpler instructions. Unfortunately, we still do

not have a good estimate of what the cost of verifying these instructions could be reduced to.

More work needs to be done in exploring the variety of instructions to be verified and refining the

strategies developed on the AAMP-FV project.

In retrospect, there has been a steady advancement of technology and techniques for formal

verification and its transfer to Collins on both the AAMP5 and AAMP-FV projects. The AAMP5

project demonstrated how formal specifications could be applied to a complex, pipelined micro-

processor and laid the groundwork for formal verification of microcode. On the AAMP-FV project,

formal specification and verification of simple instructions were well understood and applied rou-

tinely. Techniques for the more complex instructions were developed and are now being transferred
to Collins.

1In a later phase of the project, SRI completed the proofs of these supporting lemmas, as well as the proofs of
some of the more complex instructions such as CALL and IMPY. These proofs were run top-to-bottom to ensure no
lemma was left unproved in the proof chain. The axioms in the new specification have not been validated by Collins,
but the proofs have been installed and executed by them. SRI also explored in this later phase ways to automate the
proofs and make them more efficient. This work is documented in [33].

57

Thereareseveralother improvementsthat couldbe made.The AAMP-FV projecthascon-
vincedusof the importanceof sheercomputingpowerwhenattemptingformalverificationonan
industrial scale. The extensiverewriting capabilitiesand decisionproceduresof PVS playedan
essentialrolein completingtheAAMP-FV proofs--without themthe projectwouldnot havebeen
feasible.Evenso, considerabletime is spentwaiting on the prover,and still morespeedwould
be helpful. On the AAMP-FV project, an enhancementto PVS that improvedits performance
by a factor of four madepossibleapproachesthat werepreviouslyinfeasiblesimplybecausethey
tooktoo long. Future improvements in workstation speed and enhancements to PVS will drop the

man-hours per instruction further yet.

Another important area for improvement is in bit vector libraries. In hardware verification, the

manipulation of bit vectors accounts for most of the verification effort. The bit vector libraries

developed for the AAMP5 are extensive, but there are still questions of whether they are the

best form needed to support both specification and proofs. The rewrite lemmas developed for the

AAMP-FV project have moved us away from dependence on a specific bit vector representation,

although proving their correctness using at least one model serves to demonstrate their consistency.

Ideally, decision procedures for the bit vectors will be added directly to PVS to supplement those

currently available for arithmetic equality and BDD-based Boolean simplification. Even so, rewrite

rules for the bit vectors will still be needed to supplement the core functionality provided by the

decision procedure.

The AAMP-FV project also made it clear that it is not sufficient simply to complete a proof

once. Even though the design of the AAMP-FV was not changed during the project, the PVS

specifications were changed frequently to correct errors and to simplify later proofs. All too often,

these changes "broke" proofs that had already been "completed", that then had to be corrected

at considerable expense. Techniques for making proofs more robust would have reduced both the

cost and annoyance of making such changes. On most industrial projects, the requirements and

design will be far less stable than for the AAMP-FV and the need for robust proofs considerably

greater. This can be achieved both by engineering proofs to be more robust and by increasing

the capabilities of PVS. One possibility is the development of more powerful prover commands to

reduce the need for user involvement at low levels of detail. Improved user interfaces would also

make it easier to see patterns and to alter proofs to make them more robust.

Another important way to reduce the cost of formal verification is to reuse specifications and

proofs. Examples need to be done to explore how families of products can be specified. How can

common features be specified and verified, and how can these be reused and extended to specify a

single instance of the family?

A related question involves the reuse of proof strategies. Many of the micro correctness and

macro lift proofs associated with the AAMP-FV are all quite similar. This is a common situation

in industrial projects, where products are often built from variations on a few standard design

patterns. Our reuse strategy was a simple one; we copied the proof of a similar instruction, edited

it, ran it, then "tweaked" the proof until it completed. More sophisticated approaches would allow

reuse of one copy of the core strategy, with the "tweaks" added as specializations of this strategy.

As formal verification evolves from small efforts staffed almost entirely by formal methods

experts to industrial efforts staffed by domain experts, thought will need to be given to how the

tools and management of formal verification will have to change. Configuration management of

a complete PVS verification, including specifications, proofs, proof strategies, and context, can

become complex even for a project the size of the AAMP5 and AAMP-FV. As teams grow, more

58

attention will have to be paid to how work is divided among individuals with different levels of

expertise. What facilities will be needed to lower the entry level for novices? If environments for

group verification are to be developed, what features should these environments have?

Formal verification is moving towards realistic use in industrial settings. There has been steady

advancement and transfer of this technology to Collins. In fact, sufficient expertise has been

developed that it is being used not only in the ways anticipated, but in unforeseen ways by real

engineers on real projects. Further inroads will occur as tools, performance, and the pool of

examples improve.

Acknowledgements--The authors thank Rick Butler and Paul Miner of NASA Langley for their support of

the AAMP-FV and AAMP5 projects, Sam Owre and Natarjan Shankar of SRI International for the development and

maintenance of PVS, and A1 Mass of Rockwell International for translation of the microcode to PVS and consultation.

We also thank John Rushby of SRI and John Gee, Mark Kovalan, Charlie Kress, Steve Maher, Mike Masters, Nick

Mykris, Jeff Russell, and Roger Shultz of Rockwell for their support and assistance.

59

Bibliography

[1] Geoff Barrett. Formal methods applied to a floating-point number system. IEEE Transactions

on Software Engineering, 15(5):611-621, May 1989.

[2] Derek L. Beatty and Randal E. Bryant. Formally verifying a microprocessor using a simula-

tion methodology. In Proceedings of the 31st Design Automation Conference, pages 596-602.

Association for Computing Machinery, June 1994.

[3] David W. Best, Charles E. Kress, Nick M. Mykris, Jeffrey D. Russell, and William J. Smith.

An advanced-architecture CMOS/SOS microprocessor. IEEE Micro, 2(4):11-26, August 1982.

[4] William R. Bevier. Kit: A study in operating system verification. IEEE Transactions on Soft-

ware Engineering, 15(11):1368-81, November 1989. Also published as CLI Technical Report
28.

[5] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, NY, 1979.

[6] Robert S. Boyer and Yuan Yu. Automated correctness proofs of machine code programs for a

commercial microprocessor. In D. Kapur, editor, Automated Deduction - CADE-11, number

607 in Lecture Notes in Computer Science, pages 416-430. Springer-Verlag, 1992.

[7] J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor control. In

David Dill, editor, Computer-Aided Verification, CAV '93, volume 818 of Lecture Notes in

Computer Science, pages 68-80, Stanford, CA, June 1994. Springer-Verlag.

[8] R. Butler and G. Finelli. The infeasibility of experimental quantification of life-critical software

reliability. IEEE Transactions on Software Engineering, 16(5):66-76, January 1993.

[9] Ricky W. Butler. NASA Langley's research program in formal methods. In COMPASS

_91 (Proceedings of the Sixth Annual Conference on Computer Assurance), pages 157-162,

Gaithersburg, MD, June 1991. IEEE Washington Section.

[10] Ricky W. Butler, Paul S. Miner, Mandayam K. Srivas, Dave A. Greve, and Steven P. Miller. A

bitvectors library for PVS. Technical Memorandum 110274, NASA, Langley Research Center,

Hampton, VA, August 1996.

[11] W. C. Carter, W. H. Joyner, Jr., and D. Brand. Microprogram verification considered neces-

sary. In National Computer Conference, volume 48, pages 657-664. AFIPS Conference Pro-

ceedings, 1978.

60

[12] J. V. Cook. Final report for the C/30 microcodeverificationproject. TechnicalReport
ATR-86(6771)-3,ComputerScienceLaboratory,TheAerospaceCorporation,E1Segundo,CA,
September1986.

[13] D. Cyrluk, S.Rajan,N. Shankar,and M. K. Srivas.Effectivetheoremprovingfor hardware
verification.In Kumarand Kropf [24],pages287-305.

[14] BenL. Di Vito, Ricky W. Butler, and JamesL. Caldwell.Formaldesignand verificationof
a reliablecomputingplatform for real-timecontrol. NASA TechnicalMemorandum102716,
NASALangleyResearchCenter,Hampton,VA, October1990.

[15] David W. Embleyand Scott N. Woodfiled. Assessingthe quality of abstractdata types
written in Ada. In Tenth International Conference on Software Engineering, pages 144-153.

IEEE Computer Society Press, April 1988.

[16] Colin Fidge, Peter Kearney, and Mark Utting. Formal specification and interactive proof of

a simple real-time scheduler. Technical Report 94-11, Software Verification Research Centre,

The University of Queensland, April 1994.

[17] S. Gerhart, M. Bouler, K. Greene, D. Jamsek, T. Ralston, and D. Russinoff. Formal methods

transition study final report. Technical Report STP-FT-322-91, Microelectronics and Com-

puter Technology Corporation, Austin, Texas, August 1991.

[18] M. Gordon. Why higher-order logic is a good formalism for specifying and verifying hardware.

Technical Report 77, University of Cambridge Computer Laboratory, September 1985.

[19] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem Proving

Environment for Higher-Order Logic. Cambridge University Press, Cambridge, UK, 1993.

[20] Warren A. Hunt, Jr. FM8501: A Verified Microprocessor, volume 795 of Lecture Notes in

Artificial Intelligence. Springer-Verlag, Berlin, 1994.

[21] Warren A. Hunt, Jr. and Bishop C. Brock. A formal HDL and its use in the FM9001 verifica-

tion. In C. A. R. Hoare and M. J. C. Gordon, editors, Mechanized Reasoning and Hardware

Design, pages 35-47, Hemel Hempstead, UK, 1992. Prentice Hall International Series in Com-

puter Science.

[22] Jeffrey Joyce. Verification and implementation of a microprocessor. In G. Birtwistle and

P. A. Subrahmanyam, editors, VLSI Specification, Verification and Synthesis. Kluwer Aca-

demic Publishers, Boston, MA, 1988.

[23] Peter Kearney and Mark Utting. A layered real-time specification of a RISC processor. In

Costas Courcoubetis, editor, Computer-aided Verification - CA V '93, volume 697 of Lecture

Notes in Computer Science. Springer-Verlag, 1993.

[24] Ramayya Kumar and Thomas Kropf, editors. Preliminary Proceedings of the Second Confer-

ence on Theorem Provers in Circuit Design, Bad Herrenalb (Blackforest), Germany, September

1994. Forschungszentrum Informatik an der Universit/it Karlsruhe, FZI Publication 4/94.

61

[25] GeorgeB. Leeman,William C. Carter,and AlexanderBirman. Sometechniquesfor micro-
programvalidation. In Information Processing 73 (Proc. IFIP Congress 1973), pages 76-80.

North-Holland Publishing Co, 1974.

[26] B. Littlewood and L. Strigini. Validation of ultra-high dependability of software-based systems.

CA CM, November 1993.

[27] Steven P. Miller and Mandayam Srivas. Formal verification of the AAMP5 microprocessor:

A case study in the industrial use of formal methods. In WIFT'95: Workshop on Industrial-

Strength Formal specification Techniques, Boca Raton, FL, 1995. IEEE Computer Society.

[28] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In Deepak

Kapur, editor, 11th International Conference on Automated Deduction (CADE), volume 607

of Lecture Notes in Artificial Intelligence, pages 748-752, Saratoga, NY, June 1992. Springer-

Verlag.

[29] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal verification

for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on

Software Engineering, 21(2):107-125, February 1995.

[30] James B. Saxe, Stephen J. Garland, John V. Guttag, and James J. Horning. Using transfor-

mations and verification in circuit design. Formal Methods in System Design, 4(1):181-210,
1994.

[31] N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A Reference Manual (Beta

Release). Computer Science Laboratory, SRI International, Menlo Park, CA, February 1993.

[32] Mary Shaw. Prospects for an engineering discipline of software. IEEE Software, 7(11):15-24,
November 1990.

[33] Mandayam Srivas. Automating microcode verification via symbolic simulation: The AAMP-

FV experiment. Contractor report, NASA Langley Research Center, Hampton, VA. (Forth-

coming).

[34] Mandayam Srivas and Mark Bickford. Formal verification of a pipelined microprocessor. IEEE

Software, 7(5):52-64, September 1990.

[35] Mandayam Srivas and Steven P. Miller. Applying formal verification to a commercial micro-

processor. In IFIP Conference on Hardware Description Languages and Their Applications

(CHDL'95), Makuhari, Chiba, Japan, August 1995.

[36] Mandayam Srivas and Steven P. Miller. Formal verification of an avionics microprocessor.

Technical Report NASA Contractor Report 4682, NASA Langley Research Center, Hampton,

Virginia, July 1995.

[37] Mandayam Srivas and Steven P. Miller. Formal verification of the AAMP5 microprocessor.

In Jonathan P. Bowen and Michael G. Hinchey, editors, Applications of Formal Methods.

Prentice-Hall International Ltd., Hemel Hempstead, UK, 1995.

62

[38] MandayamK. SrivasandStevenP.Miller. Applyingformalverificationto theAAMP5micro-
processor:A casestudy in the industrialuseof formalmethods.Formal Methods in Systems

Design, 8(2):153-188, March 1996.

[39] Matthew Wilding. A mechanically verified application for a mechanically verified environment.

In Costas Courcoubetis, editor, Computer-aided Verification - CA V '93, volume 697 of Lecture

Notes in Computer Science. Springer-Verlag, 1993.

[40] Matthew Wilding. Machine-Checked Real-Time System Verification. PhD thesis, University

of Texas at Austin, 1996.

[41] Phillip J. Windley. The Formal Verification of Generic Interpreters. PhD thesis, University

of California, Davis, CA, June 1990.

[42] Phillip J. Windley and Michael L. Coe. A correctness model for pipelined microprocessors. In

Kumar and Kropf [24], pages 35-54.

63

Form Approved
REPORT DOCUMENTATION OMB No. 0704-0188

Publicreportingburden for thiscollection of informationis estimatedto average 1 hour per response,includingthe time for reviewinginstructions,searching existingdata sources,
gathering and maintainingthe data needed,and completing andreviewingthe collection of information.Send comments regardingthisburden estimateor anyother aspectof this
collection of information,includingsuggestions for reducingthisburden, to WashingtonHeadquartersServices, Directoratefor InformationOperationsand Reports,1215JeffersonDavis
Highway,Suite 1204, Arlington, VA 22202-4302, andto the Officeof Managementand Budget,PaperworkReduCtionProject(0704-0188), Washington,DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

February 1999
4. TITLE AND SUBTITLE

Formal Verification of the AAMP-FV Microcode

6. AUTHOR(S)

Steven P. Miller, David A. Greve, Matthew M. Wilding,

Mandayam Srivas

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Rockwell Collins, Inc.; Cedar Rapids, IA

SRI International; Menlo Park, CA

3. REPORT TYPE AND DATES COVERED

Contractor Report
5. FUNDING NUMBERS

C NAS1-19704, NAS1-20334

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

WU 519-30-31-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA/CR- 1999-208992

11. SUPPLEMENTARY NOTES

Miller, Greve, Wilding: Rockwell Collins, Cedar Rapids, IA; Srivas: SRI International, Menlo Park, CA.

Langley Technical Monitor: Paul S. Miner Final Report

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 61 Distribution: Standard

Availability: NASA CASI, (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report describes the experiences of Collins Avionics & Communications and SRI International in formally specifying

and verifying the microcode in a Rockwell proprietary microprocessor, the AAMP-FV, using the PVS verification system.

This project built extensively on earlier experiences using PVS to verify the microcode in the AAMP5, a complex,

pipelined microprocessor designed for use in avionics displays and global positioning systems. While the AAMP5

experiment demonstrated the technical feasibility of formal verification of microcode, the steep learning curve encountered

left unanswered the question of whether it could be performed at reasonable cost. The AAMP-FV project was

conducted to determine whether the experience gained on the AAMP5 project could be used to make formal verification of

microcode cost effective for safety-critical and high volume devices.

14. SUBJECT TERMS

Formal Methods, Microcode Verification, Theorem Proving

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECU RITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

72

16. PRICE CODE

A04

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribedby ANSI Std. Z39-18
298-102

